2019, 39(2):157-163. doi: 10.16078/j.tribology.2018134

石墨烯在金刚石基体表面的纳米摩擦学行为研究

上海交通大学 机械与动力工程学院,上海 200240

通讯作者: 沈彬, binshen@sjtu.edu.cn

收稿日期: 2018-09-14
录用日期: 2018-11-29
网络出版日期: 2019-03-28

Nanoscale Tribological Behavior of Graphene on Diamond Substrates

School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Corresponding author: Bin SHEN, binshen@sjtu.edu.cn

Received Date: 14 Sep 2018
Accepted Date: 29 Nov 2018
Available Online: 28 Mar 2019

引用本文: 黄哲伟, 吉喆, 陈苏琳, 张执南, 沈彬. 石墨烯在金刚石基体表面的纳米摩擦学行为研究[J]. 摩擦学学报. doi: 10.16078/j.tribology.2018134.

Citation: Zhewei HUANG, Zhe JI, Sulin CHEN, Zhinan ZHANG and Bin SHEN. Nanoscale Tribological Behavior of Graphene on Diamond Substrates[J]. TRIBOLOGY.

采用热化学气相沉积法(Thermal Chemical Vapor Deposition,TCVD)和机械剥离法分别制备了单层和少层石墨烯并转移至MPCVD制备的多晶金刚石基体表面,利用原子力显微镜研究了大气环境下石墨烯在金刚石基体上的纳米摩擦和磨损性能. 研究结果表明:单层和少层石墨烯在金刚石基体上具有良好的减摩作用,摩擦系数分别为0.03和0.014. 然而,由于石墨烯和金刚石表面之间的物理吸附作用较弱,其摩擦力会略高于SiO2/Si基体表面石墨烯的摩擦力. 随扫描速度升高,金刚石表面的单层与少层石墨烯的摩擦力的变化可以分为自然对数正比上升,基本保持不变以及黏性阻尼增加三个阶段. 在磨损试验中,TCVD法制备和转移石墨烯的过程中产生的缺陷和污染物降低了单层石墨烯的耐磨性能,而机械剥离的少层石墨烯因为无缺陷的石墨烯晶体结构在金刚石基体上展现了优异的耐磨特性. 本研究可为以金刚石为基体的石墨烯固体润滑剂使用提供理论基础.

关键词: 石墨烯, 金刚石基体, 纳米摩擦和磨损, AFM
[1]

Bunch J S, Van Der Zande A M, Verbridge S S, et al. Electromechanical resonators from graphene sheets[J]. Science, 2007, 315(5811): 490–493. doi: 10.1126/science.1136836

[2]

孙宇. 二维材料纳尺度摩擦性能研究[D]. 镇江: 江苏大学, 2017.

Sun Yu. Study on friction properties of two-dimensional materials at nano-scale[D]. Zhenjiang: Jiangsu University, 2017(in Chinese).

[3]

胡伟. 碳纳米材料的第一性原理研究[D]. 合肥: 中国科学技术大学, 2013.

Hu Wei. First-princles study of carbon materials[D]. Hefei: University of Science and Technology, 2013(in Chinese).

[4]

Zhao F, Vrajitoarea A, Jiang Q, et al. Graphene-nanodiamond heterostructures and their application to high current devices[J]. Scientific Report, 2015, 5: 13771. doi: 10.1038/srep13771

[5]

李群仰, 张帅, 祁一洲, 等. 二维材料纳米尺度摩擦行为及其机制[J]. 固体力学学报, 2017, 38(3): 189–214.

Li Qunyang, Zhang Shuai, Qi Yizhou, et al. Friction of two-dimensional materials at nanoscale: Behaviour and mechanisms[J]. Chinese Journal of Solid Mechanics, 2017, 38(3): 189–214.

[6]

Cho D H, Wang L, Kim J S, et al. Effect of surface morphology on friction of graphene on various substrates[J]. Nanoscale, 2013, 5(7): 3063–3069. doi: 10.1039/c3nr34181j

[7]

Demirba? T, Baykara M Z. Nanoscale tribology of graphene grown by chemical vapor deposition and transferred onto silicon oxide substrates[J]. Journal of Materials Research, 2016, 31(13): 1914–1923. doi: 10.1557/jmr.2016.11

[8]

Egberts P, Han G H, Liu X Z, et al. Frictional behavior of atomically thin sheets: hexagonal-shaped graphene islands grown on copper by chemical vapor deposition[J]. ACS Nano, 2014, 8(5): 5010–5021. doi: 10.1021/nn501085g

[9]

Filleter T, Mcchesney J L, Bostwick A, et al. Friction and dissipation in epitaxial graphene films[J]. Physical Review Letters, 2009, 102(8): 086102. doi: 10.1103/PhysRevLett.102.086102

[10]

Gong P, Ye Z, Yuan L, et al. Evaluation of wetting transparency and surface energy of pristine and aged graphene through nanoscale friction[J]. Carbon, 2018, 132: 749–759. doi: 10.1016/j.carbon.2018.02.093

[11]

Hammad M, Adjizian J J, Sacré C H, et al. Adhesionless and near-ideal contact behavior of graphene on Cu thin film[J]. Carbon, 2017, 122: 446–450. doi: 10.1016/j.carbon.2017.06.037

[12]

Kolodziejczyk L, Kula P, Szymanski W, et al. Frictional behaviour of polycrystalline graphene grown on liquid metallic matrix[J]. Tribology International, 2016, 93: 628–639. doi: 10.1016/j.triboint.2014.12.003

[13]

Lee C, Li Q, Kalb W, et al. Frictional characteristics of atomically thin sheets[J]. Science, 2010, 328(5974): 76–80. doi: 10.1126/science.1184167

[14]

Li Q, Lee C, Carpick R W, et al. Substrate effect on thickness-dependent friction on graphene[J]. Physica Status Solidi (B), 2010, 247(11-12): 2909–2914. doi: 10.1002/pssb.v247.11/12

[15]

Paolicelli G, Tripathi M, Corradini V, et al. Nanoscale frictional behavior of graphene on SiO(2) and Ni(111) substrates[J]. Nanotechnology, 2015, 26(5): 055703. doi: 10.1088/0957-4484/26/5/055703

[16]

Peng Y, Wang Z, Zou K. Friction and wear properties of different types of graphene nanosheets as effective solid lubricants[J]. Langmuir, 2015, 31(28): 7782–7791. doi: 10.1021/acs.langmuir.5b00422

[17]

Peng Y, Zeng X, Liu L, et al. Nanotribological characterization of graphene on soft elastic substrate[J]. Carbon, 2017, 124: 541–546. doi: 10.1016/j.carbon.2017.09.018

[18]

Spear J C, Custer J P, Batteas J D. The influence of nanoscale roughness and substrate chemistry on the frictional properties of single and few layer graphene[J]. Nanoscale, 2015, 7(22): 10021–10029. doi: 10.1039/C5NR01478F

[19]

Ye Z, Egberts P, Han G H, et al. Load-dependent friction hysteresis on graphene[J]. ACS Nano, 2016, 10(5): 5161–5168. doi: 10.1021/acsnano.6b00639

[20]

Zeng X, Peng Y, Lang H. A novel approach to decrease friction of graphene[J]. Carbon, 2017, 118: 233–240. doi: 10.1016/j.carbon.2017.03.042

[21]

Liu B, Xuan N, Ba K, et al. Towards the standardization of graphene growth through carbon depletion, refilling and nucleation[J]. Carbon, 2017, 119: 350–354. doi: 10.1016/j.carbon.2017.04.055

[22]

Butt H-J, Jaschke M. Calculation of thermal noise in atomic force microscopy[J]. Nanotechnology, 1995, 6: 1–7. doi: 10.1088/0957-4484/6/1/001

[23]

Varenberg M, Etsion I, Halperin G. An improved wedge calibration method for lateral force in atomic force microscopy[J]. Review of Scientific Instruments, 2003, 74(7): 3362–3367. doi: 10.1063/1.1584082

[24]

Wu J, Xu H, Zhang J. Raman spectroscopy of graphene[J]. Acta Chimica Sinica, 2014, 72(3): 301. doi: 10.6023/A13090936

[25]

Nemes-Incze P, Osváth Z, Kamarás K, et al. Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy[J]. Carbon, 2008, 46(11): 1435–1442. doi: 10.1016/j.carbon.2008.06.022

[26]

Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666–669. doi: 10.1126/science.1102896

[27]

Li J, Gao T, Luo J. Superlubricity of graphite induced by multiple transferred graphene nanoflakes[J]. Adv Sci (Weinh), 2018, 5(3): 1700616. doi: 10.1002/advs.v5.3

[28]

Liu S W, Wang H P, Xu Q, et al. Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere[J]. Nature Communication, 2017, 8: 14029. doi: 10.1038/ncomms14029

[29]

Nguyen T C, Otani M, Okada S. Semiconducting electronic property of graphene adsorbed on (0001) surfaces of SiO2[J]. Physical Review Letters, 2011, 106(10): 106801. doi: 10.1103/PhysRevLett.106.106801

[30]

Zw?rner O, H?lscher H, Schwarz U, et al. The velocity dependence of frictional forces in point-contact friction[J]. Applied Physics A: Materials Science & Processing, 1998, 66: S263–S267.

[31]

Gnecco E, Bennewitz R, Gyalog T, et al. Velocity dependence of atomic friction[J]. Physical review letters, 2000, 84(6): 1172. doi: 10.1103/PhysRevLett.84.1172

[32]

Riedo E, Gnecco E, Bennewitz R, et al. Interaction potential and hopping dynamics governing sliding friction[J]. Physical Review Letters, 2003, 91(8): 084502. doi: 10.1103/PhysRevLett.91.084502

[1]

高健, 余丙军, 金晨宁, 肖晨, 钱林茂. 不同温度下砷化镓表面摩擦诱导选择性刻蚀特性研究[J]. 摩擦学学报, 2016, 36(4):-163. doi: 10.16078/j.tribology.2016.04.011

[2]

蒲吉斌, 王立平, 薛群基. 石墨烯摩擦学及石墨烯基复合润滑材料的研究进展[J]. 摩擦学学报, 2014, 34(1):-163.

[3]

方燕洁, 白涛. 石墨烯/TiO2陶瓷薄膜的制备及其摩擦学性能研究[J]. 摩擦学学报, 2017, 37(3):-163. doi: 10.16078/j.tribology.2017.03.003

[4]

刘栓, 姜欣, 赵海超, 顾林, 王永欣, 李金龙, 余海斌, 陈建敏. 石墨烯环氧涂层的耐磨耐蚀性能研究[J]. 摩擦学学报, 2015, 35(5):-163. doi: 10.16078/j.tribology.2015.05.012

[5]

. 利用 AFM 机械刻蚀技术在OTS自组装单分子膜表面制备纳米图案及其力学性能研究[J]. 摩擦学学报, 2008, 28(1):-163.

[6]

. 润滑条件下金刚石薄膜及石墨/金刚石复合薄膜的摩擦学性能[J]. 摩擦学学报, 2002, 22(1):-163.

[7]

. 氧化硼的纳米磨损特性研究[J]. 摩擦学学报, 1999, 19(2):-163.

[8]

. 掺氮类金刚石薄膜的纳米力学及纳米摩擦特性研究[J]. 摩擦学学报, 2005, 25(6):-163.

[9]

. 纳米加工过程中金刚石刀具磨损研究的新进展[J]. 摩擦学学报, 2008, 28(3):-163.

[10]

. 类金刚石涂层在不同载荷和湿度下的摩擦特性[J]. 摩擦学学报, 2003, 23(1):-163.

[11]

王成兵, 王舟, 张俊彦. 含氮类金刚石薄膜的力学和摩擦学性能的研究[J]. 摩擦学学报, 2012, 32(1):-163.

[12]

. 热处理对类金刚石碳薄膜力学和摩擦性能的影响[J]. 摩擦学学报, 2004, 24(3):-163.

[13]

刘蕴锋, 朱永伟, 刘婷婷, 张尚文, 彭雁. Ni-P-纳米金刚石黑粉化学复合镀层的摩擦磨损性能[J]. 摩擦学学报, 2013, 33(3):-163.

[14]

. 类金刚石多层膜在不同环境下的摩擦磨损行为研究[J]. 摩擦学学报, 2006, 26(6):-163.

[15]

. 相对湿度对类金刚石薄膜摩擦磨损性能的影响[J]. 摩擦学学报, 2005, 25(5):-163.

[16]

. 磨削花岗石过程中钎焊金刚石磨损特征分析[J]. 摩擦学学报, 2007, 27(3):-163.

[17]

. 单晶金刚石车刀在超精密单点切削中的磨损分析[J]. 摩擦学学报, 2002, 22(5):-163.

[18]

. 微加工中原子力显微镜金刚石针尖的磨损研究[J]. 摩擦学学报, 2001, 21(3):-163.

[19]

张亚锋, 何洪途, 余家欣, 廖宁. 用于ICF的三种典型光学玻璃的AFM纳米划痕行为研究[J]. 摩擦学学报, 2018, 38(3):-163. doi: 10.16078/j.tribology.2018.03.013

[20]

许伟, 代明江, 林松盛, 侯惠君, 李洪, 周克崧. 掺W类金刚石薄膜的高温摩擦学行为[J]. 摩擦学学报, 2017, 37(3):-163. doi: 10.16078/j.tribology.2017.03.014

  • 计量
    • PDF下载量 (3)
    • 文章访问量 (37)
    • HTML全文浏览量 (12)
    • 引证文献数  (0)
    目录

    Figures And Tables

    石墨烯在金刚石基体表面的纳米摩擦学行为研究

    黄哲伟, 吉喆, 陈苏琳, 张执南, 沈彬