2019, 39(2):140-149. doi: 10.16078/j.tribology.2018154

石墨烯/二硫化钼复合纳米添加剂的制备及摩擦学性能研究

1. 

中科院兰州化学物理研究所 固体润滑国家重点实验室,甘肃 兰州 730000

2. 

中国科学院大学,北京 100049

3. 

兰州理工大学 省部共建有色金属先进加工与再利用国家重点实验室,甘肃 兰州 730050

通讯作者: 乔旦, ddqiao@licp.cas.cn冯大鹏, dpfeng@licp.cas.cn

收稿日期: 2018-10-16
录用日期: 2018-11-29
网络出版日期: 2019-03-28

Preparation and Tribological Performance of RGO/MoS2 as Composite Nano-Additives

1. 

State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Gansu Lanzhou 730000, China

2. 

University of Chinese Academy of Sciences, Beijing 100049, China

3. 

State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Gansu Lanzhou 730050, China

Corresponding author: Dan QIAO, ddqiao@licp.cas.cnDapeng FENG, dpfeng@licp.cas.cn

Received Date: 16 Oct 2018
Accepted Date: 29 Nov 2018
Available Online: 28 Mar 2019

引用本文: 巴召文, 黄国威, 乔旦, 冯大鹏. 石墨烯/二硫化钼复合纳米添加剂的制备及摩擦学性能研究[J]. 摩擦学学报. doi: 10.16078/j.tribology.2018154.

Citation: Zhaowen BA, Guowei HUANG, Dan QIAO and Dapeng FENG. Preparation and Tribological Performance of RGO/MoS2 as Composite Nano-Additives[J]. TRIBOLOGY.

采用水热法制备了两种不同形貌结构的石墨烯/二硫化钼纳米复合物(RGO/MoS2-1和RGO/MoS2-2). 通过电子显微镜、拉曼光谱、X射线衍射仪和热重分析仪对所制备材料的形貌、成分和晶格结构进行表征;利用SRV-IV微动摩擦磨损试验机考察了RGO/MoS2-1和RGO/MoS2-2作为PAO-4添加剂的摩擦学性能. 结果显示具有花状结构的RGO/MoS2-2与RGO/MoS2-1相比具有更大的层间距,且因其较大的层间距使得RGO/MoS2-2表现出较好的摩擦学性能. Raman和XPS对润滑机理的表征结果证实了RGO/MoS2复合纳米添加剂优异的摩擦学性能归因于吸附和摩擦化学反应的协同作用.

关键词: 石墨烯/二硫化钼, 纳米添加剂, 层间距, 吸附, 摩擦化学反应
[1]

Geim A, Novoselov K. The rise of graphene[J]. Nature Material, 2007, 6: 183–187. doi: 10.1038/nmat1849

[2]

Novoselov K, Fal V, Colombo L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192–200. doi: 10.1038/nature11458

[3]

Han J H, Lee S, Cheon J. Synthesis and structural transformations of colloidal 2D layered metal chalcogenide nanocrystals[J]. Chemical Society Reviews, 2013, 42(7): 2581–2591. doi: 10.1039/C2CS35386E

[4]

Rodenas T, Luz I, Prieto G, et al. Metal-organic framework nanosheets in polymer composite materials for gas separation[J]. Nature Materials, 2014, 14: 48–55.

[5]

Peng Y, Li Y, Ban Y, et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes[J]. Science, 2014, 346(6215): 1356–1359. doi: 10.1126/science.1254227

[6]

Lee C, Li Q, Kalb W, et al. Frictional characteristics of atomically thin sheets[J]. Science, 2010, 328(5974): 76–80. doi: 10.1126/science.1184167

[7]

Sandoz E J, Tertuliano O A, Terrell E J. An atomistic study of the abrasive wear and failure of graphene sheets when used as a solid lubricant and a comparison to diamond-like-carbon coatings[J]. Carbon, 2012, 50(11): 4078–4084. doi: 10.1016/j.carbon.2012.04.055

[8]

Cui W, Xu S, Yan B, et al. Triphasic 2d materials by vertically stacking laterally heterostructured 2H-/1T-MoS2 on graphene for enhanced photoresponse[J]. Advanced Electronic Materials, 2017, 3(7): 1700024–1700031. doi: 10.1002/aelm.201700024

[9]

Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6: 147–150. doi: 10.1038/nnano.2010.279

[10]

Li L, Yu Y, Ye G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5): 372–377. doi: 10.1038/nnano.2014.35

[11]

Wu Z S, Zhou G, Yin L C, et al. Graphene/metal oxide composite electrode materials for energy storage[J]. Nano Energy, 2012, 1(1): 107–131. doi: 10.1016/j.nanoen.2011.11.001

[12]

胡坤宏, 徐勇, 徐玉福, 等. 不同形态的二硫化钼润滑剂在离子液体中的摩擦学性能[J]. 摩擦学学报[J], 2015, 35(2): 167–175.

Hu KunHong, Xu Yong, Xu Yufu, et al. Tribological properties of MoS2 lubricants with different morphologies in an ionic liquid[J]. Tribology, 2015, 35(2): 167–175.

[13]

Grossiord C, Varlot K, Martin JM, et al. MoS2 single sheet lubrication by molybdenum dithiocarbamate[J]. Tribology International, 1998, 31(12): 737–743. doi: 10.1016/S0301-679X(98)00094-2

[14]

Chen Z, Liu X, Liu Y, et al. Ultrathin MoS2 nanosheets with superior extreme pressure property as boundary lubricants[J]. Science Report, 2015, 5: 12869–128875. doi: 10.1038/srep12869

[15]

Rosentsveig R, Gorodnev A, Feuerstein N, et al. Fullerene-like MoS2 nanoparticles and their tribological behavior[J]. Tribology Letters, 2009, 36(2): 175–182. doi: 10.1007/s11249-009-9472-0

[16]

沃恒洲, 胡坤宏, 胡献国. 纳米二硫化钼作为机械油添加剂的摩擦学特性研究[J]. 摩擦学学报, 2004, 24(1): 33–37. doi: 10.3321/j.issn:1004-0595.2004.01.008

Wo Hengzhou, Hu Kunhong, Hu Xianguo. Tribological properties of MoS2 nanoparticles as additive in a machine oil[J]. Tribology, 2004, 24(1): 33–37. doi: 10.3321/j.issn:1004-0595.2004.01.008

[17]

白鸽玲, 吴壮志. 二硫化钼纳米球的制备及其摩擦性能研究[J]. 润滑与密封, 2013, 38(4): 93–96. doi: 10.3969/j.issn.0254-0150.2013.04.021

Bai Geling, Wu Zhuangzhi. Synthesisand tribological properties of MoS2 nanospheres[J]. Lubrication Engineering, 2013, 38(4): 93–96. doi: 10.3969/j.issn.0254-0150.2013.04.021

[18]

Windom B, Sawyer W, Hahn D. A raman spectroscopic study of MoS2 and MoO3: applications to tribological systems[J]. Tribology Letters, 2011, 42(3): 301–310. doi: 10.1007/s11249-011-9774-x

[19]

Fan X, Wang L. High-performance lubricant additives based on modified graphene oxide by ionic liquids[J]. Journal of Colloid and Interface Science, 2015, 452: 98–108. doi: 10.1016/j.jcis.2015.04.025

[20]

Lin J, Wang L, Chen G. Modification of graphene platelets and their tribological properties as a lubricant additive[J]. Tribology Letters, 2011, 41(1): 209–215. doi: 10.1007/s11249-010-9702-5

[21]

Zheng X, Xu Y, Geng J, et al. Tribological behavior of Fe3O4/MoS2 nanocomposites additives in aqueous and oil phase media[J]. Tribology International, 2016, 102: 79–87. doi: 10.1016/j.triboint.2016.05.024

[22]

Song H, Jia X, Li N, et al. Synthesis of α-Fe2O3 nanorod/graphene oxide composites and their tribological properties[J]. Journal of Materials Chemistry, 2012, 22(3): 895–902. doi: 10.1039/C1JM13740A

[23]

Wang L F, Ma T B, Hu Y Z, et al. Superlubricity of two-dimensional fluorographene/MoS2 heterostructure: A first-principles study[J]. Nanotechnology, 2014, 25(38): 385701. doi: 10.1088/0957-4484/25/38/385701

[24]

Hou K, Wang J, Yang Z, et al. One-pot synthesis of reduced graphene oxide/molybdenum disulfide heterostructures with intrinsic incommensurateness for enhanced lubricating properties[J]. Carbon, 2017, 115: 83–94. doi: 10.1016/j.carbon.2016.12.089

[25]

Marcano DC, Kosynkin DV, Berlin JM, et al. Improved synthesis of graphene oxide[J]. ACS Nano, 2010, 4(8): 4806–4814. doi: 10.1021/nn1006368

[26]

Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide: synthesis, properties, and applications[J]. Advanced Materials, 2010, 22(35): 3906–3924. doi: 10.1002/adma.201001068

[27]

Lake JR, Cheng A, Selverston S, et al. Graphene metal oxide composite supercapacitor electrodes[J]. Journal of Vacuum Science & Technology B, 2012, 30(3): 03D118.

[28]

康怡然, 蔡锋, 陈宏源, 等. 碳纳米管/石墨烯复合结构及其电化学电容行为[J]. 化学进展, 2014, 26(9): 1562–1569.

Kong Yiran, Cai Feng, Chen Hongyuan, et al. Carbon nanotube/graphene hybrid nanostructures and their application in supercapacitors[J]. Progress in Chemistry, 2014, 26(9): 1562–1569.

[29]

Li B, Zhou L, Wu D, et al. Photochemical chlorination of graphene[J]. ACS Nano, 2011, 5(7): 5957–5961. doi: 10.1021/nn201731t

[30]

Liu D, Xu W, Liu Q, et al. Unsaturated-sulfur-rich MoS2 nanosheets decorated on free-standing swnt film: Synthesis, characterization and electrocatalytic application[J]. Nano Research, 2016, 9(7): 2079–2087. doi: 10.1007/s12274-016-1098-6

[31]

Mestl G, Ruiz P, Delmon B, et al. Oxygen-exchange properties of MoO3: an in situ Raman spectroscopy study[J]. Journal of Physical Chemistry, 1994, 98: 11269–11275. doi: 10.1021/j100095a007

[32]

Xie J, Zhang J, Li S, et al. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution[J]. Journal of the American Chemical Society, 2013, 135(47): 17881–17888. doi: 10.1021/ja408329q

[33]

Holzwarth U, Gibson N. The scherrer equation versus the debye-scherrer equation[J]. Nature Nanotechnology, 2011, 6: 534–341. doi: 10.1038/nnano.2011.145

[34]

Lukowski M, Daniel A, Meng F, et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets[J]. Journal of the American Chemical Society, 2013, 135(28): 10274–10277. doi: 10.1021/ja404523s

[35]

Han Y, Qiao D, Guo Y, et al. influence of competitive adsorption on lubricating property of phosphonate ionic liquid additives in PEG[J]. Tribology Letters, 2016, 64(2): 3–12.

[36]

Zhao J, He Y, Wang Y, et al. An investigation on the tribological properties of multilayer graphene and MoS2 nanosheets as additives used in hydraulic applications[J]. Tribology International, 2016, 97: 14–20. doi: 10.1016/j.triboint.2015.12.006

[37]

Gong K, Wu X, Zhao G, et al. Nanosized MoS2 deposited on graphene as lubricant additive in polyalkylene glycol for steel/steel contact at elevated temperature[J]. Tribology International, 2017, 110: 1–7. doi: 10.1016/j.triboint.2017.01.024

[1]

韩云燕, 乔旦, 郭月霞, 冯大鹏. 膦酸酯离子液体作为两种碳氢润滑油添加剂的摩擦学行为及机理研究[J]. 摩擦学学报, 2017, 37(1):-149. doi: 10.16078/j.tribology.2017.01.004

[2]

. 飞行时间二次离子质谱在摩擦学领域中的应用[J]. 摩擦学学报, 2007, 27(6):-149.

[3]

韩云燕, 乔旦, 张霖, 冯大鹏. 膦酸酯类离子液体作为钢/铜锡合金润滑剂的摩擦学性能及其机理研究[J]. 摩擦学学报, 2015, 35(2):-149. doi: 10.16078/j.tribology.2015.02.006

[4]

郭月霞, 乔旦, 韩云燕, 张霖, 冯大鹏, 石雷. 离子液体作为钢-聚四氟乙烯润滑剂的摩擦学性能研究[J]. 摩擦学学报, 2016, 36(2):-149. doi: 10.16078/j.tribology.2016.02.004

[5]

赵鸿斌, 彭文龙, 刘仁德, 张志刚, 邓碧云, 王励申, 谭援强. 丁氧基二硫代碳酸-S-乙酸酯类化合物的合成、表征和摩擦学性能初步研究[J]. 摩擦学学报, 2011, 31(5):-149.

[6]

. 水在β-氮化硅(0001)面吸附的密度泛函理论研究[J]. 摩擦学学报, 2007, 27(1):-149.

[7]

李霞, 郭峰, 黄柏林. 流体润滑条件下BSA水溶液吸附膜的光干涉测量[J]. 摩擦学学报, 2014, 34(6):-149.

[8]

张鼎, 赵福燕, 张嘎, 王齐华, 王廷梅. 聚苯硫醚复合材料在柴油润滑状态下的摩擦学性能研究[J]. 摩擦学学报, 2017, 37(4):-149. doi: 10.16078/j.tribology.2017.04.015

[9]

. 二元添加剂体系化学反应活性与极压抗磨性的研究[J]. 摩擦学学报, 1993, 13(1):-149.

[10]

. 纳米二硫化钼作为机械油添加剂的摩擦学特性研究[J]. 摩擦学学报, 2004, 24(1):-149.

[11]

张丽丽, 蒲吉斌, 张广安, 王立平, 薛群基. 类石墨烯二硫化钼的制备及其真空摩擦学性能研究[J]. 摩擦学学报, 2015, 35(6):-149. doi: 10.16078/j.tribology.2015.06.014

[12]

陈汉林, 陈国需, 杜鹏飞, 杨皛, 邵毅, 田忠利. 二硫化钨纳米粉体作为锂基润滑脂添加剂的摩擦学研究[J]. 摩擦学学报, 2015, 35(6):-149. doi: 10.16078/j.tribology.2015.06.001

[13]

. 二硫化钼作为油脂添加剂的几个问题[J]. 摩擦学学报, 1983, 3(2):-149.

[14]

. 聚酰亚胺/二硫化钼插层复合材料的制备及其摩擦磨损性能研究[J]. 摩擦学学报, 2005, 25(4):-149.

[15]

. 有机钼及其复合纳米润滑添加剂的摩擦磨损性能研究[J]. 摩擦学学报, 2005, 25(4):-149.

[16]

孟庆娟, 张晟卯, 余来贵, 吴志申, 张治军. 水分散性纳米级二硫化钼的制备及其摩擦学性能评价[J]. 摩擦学学报, 2011, 31(2):-149.

[17]

商克栋, 郑韶先, 鞠鹏飞, 蒲吉斌, 张广安, 王立平, 薛群基. 南海海洋大气环境二硫化钼纳米多层薄膜摩擦学行为研究[J]. 摩擦学学报, 2018, 38(4):-149. doi: 10.16078/j.tribology.2018.04.006

[18]

胡坤宏, 徐勇, 徐玉福, 胡献国. 不同形态的二硫化钼润滑剂在离子液体中的摩擦学性能[J]. 摩擦学学报, 2015, 35(2):-149. doi: 10.16078/j.tribology.2015.02.007

[19]

. 片状纳米石墨的制备及其作为润滑油添加剂的摩擦磨损性能[J]. 摩擦学学报, 2005, 25(4):-149.

[20]

王建华, 宋敏, 李金龙, 王晓波. 水溶性纳米二氧化硅添加剂的制备及摩擦学性能研究[J]. 摩擦学学报, 2011, 31(2):-149.

  • 计量
    • PDF下载量 (3)
    • 文章访问量 (44)
    • HTML全文浏览量 (15)
    • 引证文献数  (0)
    目录

    Figures And Tables

    石墨烯/二硫化钼复合纳米添加剂的制备及摩擦学性能研究

    巴召文, 黄国威, 乔旦, 冯大鹏