2019, 39(2):131-139. doi: 10.16078/j.tribology.2018073

T型槽端面密封气膜热弹流润滑动态稳定性

1. 

浙江工业大学,机械工程学院,浙江 杭州 310032

2. 

浙江科技学院,机械与能源工程学院,浙江 杭州 310023

通讯作者: 白少先, bsx@zjut.edu.cn

收稿日期: 2018-07-02
录用日期: 2018-10-12
网络出版日期: 2019-03-28

Thermoelastohydrodynamic Gas Lubrication of T-Groove Face Seals: Stability of Sealing Film

1. 

Zhejiang University of Technology, College of Mechanical Engineering, Zhejiang Hangzhou 310032, China

2. 

Zhejiang University of Science and Technology, School of Mechanical and Energy Engineering, Zhejiang Hangzhou 310023, China

Corresponding author: Shaoxian BAI, bsx@zjut.edu.cn

Received Date: 02 Jul 2018
Accepted Date: 12 Oct 2018
Available Online: 28 Mar 2019

引用本文: 白少先, 魏佳, 朱得磊, 马春红. T型槽端面密封气膜热弹流润滑动态稳定性[J]. 摩擦学学报. doi: 10.16078/j.tribology.2018073.

Citation: Shaoxian BAI, Jia WEI, Delei ZHU and Chunhong MA. Thermoelastohydrodynamic Gas Lubrication of T-Groove Face Seals: Stability of Sealing Film[J]. TRIBOLOGY.

对T型槽端面密封气膜热弹流润滑动态稳定进行了分析. 考虑端面热变形和弹性变形以及辅助密封的阻尼特性,数值分析了不同振动频率下密封气膜动态压力分布和温度分布规律,并利用小扰动方法分析了外界扰动频率对气膜刚度、阻尼和振幅的影响规律. 结果表明:高压和高速条件下,密封端面的弹性变形和热变形产生发散间隙,导致密封气膜厚度显着降低;外界扰动产生附加压力和温度分布,刚度随扰动频率的增加而迅速增加,阻尼随扰动频率的增加而迅速下降;一定扰动频率范围内,轴向振幅与扰动频率成对数线性关系增加,辅助密封阻尼使得密封气膜的振幅显着上升.

关键词: 气体端面密封, 热弹变形, 动态刚度, 动态阻尼, T型槽
[1]

Gruenewald M, Wagner W. Recent progress in compressor sealing[J]. Sealing Technology, 2005, 8: 6–8.

[2]

黄绍硕, 权军胜. T型槽串联式干气密封在加氢裂化循环氢压缩机中的应用[J]. 压缩机技术, 2007, (3): 17–21. doi: 10.3969/j.issn.1006-2971.2007.03.006

Huang Shaoshuo, Quan Junsheng. Application of T-groove series dry gas seal in hydrocracking circulating hydrogen compressor[J]. Compressor Technology, 2007, (3): 17–21. doi: 10.3969/j.issn.1006-2971.2007.03.006

[3]

王衍, 孙见君, 陶凯, 等. 双向旋转式非接触机械密封技术研究进展[J]. 流体机械, 2013, 41(3): 34–40. doi: 10.3969/j.issn.1005-0329.2013.03.008

Wang Yan, Sun Jianjun, Tao Kai, et al. Research progress in the bi-direction non-contact mechanical seal technology[J]. Fluid Machinery, 2013, 41(3): 34–40. doi: 10.3969/j.issn.1005-0329.2013.03.008

[4]

Falaleev S V, Bondarchuk P V, Tisarev A Y. Development of advanced carbon face seals for aircraft engines[C]. IOP Conf Series: Materials Science and Engineering, 2018, 302(1): 012004..

[5]

胡文绩, 陈秀琴, 余向东. T型槽干气密封端面流场的数值模拟[J]. 润滑与密封, 2008, 33(11): 20–23. doi: 10.3969/j.issn.0254-0150.2008.11.006

Hu Wenji, Chen Xiuqin, Yu Xiangdong. Numerical simulation of face flow on T-shape groove gry gas seal[J]. Lubrication Engineering, 2008, 33(11): 20–23. doi: 10.3969/j.issn.0254-0150.2008.11.006

[6]

李仁年, 沈建锋, 韩伟, 等. T型槽干气密封内微流动特性的数值计算[J]. 兰州理工大学学报, 2009, 35(5): 42–46. doi: 10.3969/j.issn.1673-5196.2009.05.010

Li Rennian, Shen Jianfeng, Han Wei, et al. Numerical evaluation of micro-channel flow characteristics in T-groove dry gas seal[J]. Journal of Lanzhou University of Technology, 2009, 35(5): 42–46. doi: 10.3969/j.issn.1673-5196.2009.05.010

[7]

王衍, 孙见君, 陶凯, 等. T型槽干气密封数值分析及型槽优化[J]. 摩擦学学报, 2014, 34(4): 420–427. doi: 10.16078/j.tribology.2014.04.012

Wang Yan, Sun Jianjun, Tao Kai, et al. Numerical analysis of T-groove dry gas seal and groove optimization[J]. Tribology, 2014, 34(4): 420–427. doi: 10.16078/j.tribology.2014.04.012

[8]

Rui Z, Ren J, Hongguang L I, et al. Nonlinear dynamics study of a high-temperature rotor-bearing-seal system in gas turbine[J]. Afore, 2014, 19(1): 629–640.

[9]

Badykov R R, Falaleev S V. Advanced dynamic model development of dry gas seal[J]. Procedia Engineering, 2017, 176: 344–354. doi: 10.1016/j.proeng.2017.02.331

[10]

Takami M R, Gerdroodbary M B, Ganji D D. Thermal analysis of mechanical face seal using analytical approach[J]. Thermal Science and Engineering Progress, 2017, 5: 60–68.

[11]

Thomas S, Brunetière N, Tournerie B. Thermoelastohydrodynamic behavior of mechanical gas face seals operating at high pressure[J]. ASME Journal of Tribology, 2007, 129(4): 841–850. doi: 10.1115/1.2768086

[12]

丁雪兴, 刘勇, 陈宗杰, 等. 热耗散变形下螺旋槽干气密封微尺度气膜流动特性研究[J]. 工程力学, 2014, 31(11): 237–243.

Ding Xuexing, Liu Yong, Chen Zongjie, et al. Research on flow characteristics of micro-gas film on the spiral groove dry-gas seal under the thermo-elastic deformation considering the thermal dissipation[J]. Engineering Mechanics, 2014, 31(11): 237–243.

[13]

Ding X X, Lu J J. Theoretical analysis and experiment on gas film temperature in a spiral groove dry gas seal under high speed and pressure[J]. International Journal of Heat&Mass Transition, 2016, 96: 438–450.

[14]

Du Q W, Gao K K, Zhang D, et al. Effects of grooved ring rotation and working fluid on the performance of dry gas seal[J]. International Journal Of Heat And Mass Transfer, 2018, 126: 1323–32. doi: 10.1016/j.ijheatmasstransfer.2018.05.055

[15]

Valigi M C, Braccesi C, Logozzo S, et al. A new telemetry system for measuring the rotating ring's temperature in a tribological test rig for mechanical face seals[J]. Tribology International, 2017, 106: 71–77. doi: 10.1016/j.triboint.2016.10.041

[16]

Ding S P, Bai S X. Thermoelastohydrodynamic behaviour of inclined-ellipse dimpled gas face seals[J]. Science China Technological Sciences, 2017, 60(4): 1–9.

[17]

Bai S X, Ma C H, Peng X D, et al. Thermoelastohydrodynamic behavior of gas spiral groove face seals operating at high pressure and speed[J]. ASME Journal of Tribology, 2014, 137(2): 1–11.

[18]

Ma C H, Bai S X, Peng X D. Thermo-hydrodynamic characteristics of spiral groove gas face seals operating at low pressure[J]. Tribology International, 2016, 95: 44–54. doi: 10.1016/j.triboint.2015.11.001

[19]

Ma C H, Bai S X, Peng X D. Thermoelastohydrodynamic characteristics of T-grooves gas face seals[J]. International Journal of Heat&Mass Transition, 2016, 102: 277–286.

[20]

马春红, 白少先, 康盼. 氟橡胶O型圈低压气体密封黏滞摩擦特性实验[J]. 摩擦学学报, 2014, 34(2): 160–164. doi: 10.16078/j.tribology.2014.02.008

Ma Chunhong, Bai Shaoxian, Kang Pan. Experiment of viscous friction characteristics of fluorous rubber O-rings at low gas seal pressure[J]. Tribology, 2014, 34(2): 160–164. doi: 10.16078/j.tribology.2014.02.008

[21]

朱启惠, 白少先. 氟橡胶O型圈低压气体密封微动摩擦特性试验[J]. 摩擦学学报, 2015, 35(5): 646–650. doi: 10.16078/j.tribology.2015.05.018

Zhu Qihui, Bai Shaoxian. Experiment of frictional characteristics of fretting fluorine rubber O-rings at low gas seal pressure[J]. Tribology, 2015, 35(5): 646–650. doi: 10.16078/j.tribology.2015.05.018

[22]

朱启惠, 丁少鹏, 白少先. 高压气体密封橡胶O型圈往复摩擦特性实验研究[J]. 润滑与密封, 2016, 41(11): 37–40, 104. doi: 10.3969/j.issn.0254-0150.2016.11.008

Zhu Qihui, Ding Shaopeng, Bai Shaoxian. Experiment of frictional characteristics of rubber O-rings at high gas seal pressure[J]. Lubrication Engineering, 2016, 41(11): 37–40, 104. doi: 10.3969/j.issn.0254-0150.2016.11.008

[23]

白少先, 温诗铸.气体热动力润滑与密封[M]. 北京:清华大学出版社, 2016.

Bai Shaoxian, Wen Shizhu. Gas thermo-hydrodynamic lubrication and seals[M]. Beijing: Tsinghua University Press, 2016(in Chinese).

[24]

刘雨川, 王之栎, 陆震, 等. 端面气膜密封修正准一维可压流分析[J]. 机械工程学报, 1999, 35(6): 10–13. doi: 10.3321/j.issn:0577-6686.1999.06.003

Liu Yuchuan, Wang Zhile, Lu Zhen, et al. Analysis of revisory quasi-one-dimensional compressible flow for gas film face seal[J]. Chinese Journal of Mechanical Engineering, 1999, 35(6): 10–13. doi: 10.3321/j.issn:0577-6686.1999.06.003

[25]

谢静, 白少先. 高速气流阻塞效应对倾斜微孔端面密封动压特性的影响[J]. 摩擦学学报, 2017, 37(6): 806–813. doi: 10.16078/j.tribology.2017.06.012

Xie Jing, Bai Shaoxian. The effect of high speed air flow lubrication on hydrodynamic properties of inclined-dimples face seals[J]. Tribology, 2017, 37(6): 806–813. doi: 10.16078/j.tribology.2017.06.012

[1]

. 带内环槽的螺旋槽干式气体端面密封的静压性能[J]. 摩擦学学报, 2008, 28(6):-139.

[2]

彭旭东, 刘鑫, 孟祥铠, 盛颂恩, 李纪云. 核主泵用双锥度端面流体静压机械密封热弹流效应研究[J]. 摩擦学学报, 2012, 32(3):-139.

[3]

王衍, 孙见君, 陶凯, 马晨波, 涂桥安. T型槽干气密封数值分析及槽型优化[J]. 摩擦学学报, 2014, 34(4):-139.

[4]

徐奇超, 江锦波, 陈源, 彭旭东, 王玉明. 经典曲线型槽干气密封稳动态密封特性数值分析[J]. 摩擦学学报, 2018, 38(5):-139. doi: 10.16078/j.tribology.2018.05.012

[5]

陈源, 彭旭东, 李纪云, 江锦波. 螺旋槽结构参数对干气密封动态特性的影响研究[J]. 摩擦学学报, 2016, 36(4):-139. doi: 10.16078/j.tribology.2016.04.001

[6]

彭旭东, 呼延晨龙, 白少先, 李纪云, 盛颂恩. 仿生多叶翼型槽干式气体端面密封的性能研究[J]. 摩擦学学报, 2013, 33(4):-139.

[7]

. 表面粗糙度对螺旋槽干式气体端面密封性能预测与结构优化的影响[J]. 摩擦学学报, 2007, 27(6):-139.

[8]

彭旭东, 呼延晨龙, 白少先, 李纪云, 盛颂恩. 基于鸟翼轮廓的干式气体密封仿生型槽设计[J]. 摩擦学学报, 2012, 32(6):-139.

[9]

陈源, 彭旭东, 江锦波, 孟祥铠, 李纪云. 密封环挠性安装形式对干气密封动态追随性的影响[J]. 摩擦学学报, 2017, 37(2):-139. doi: 10.16078/j.tribology.2017.02.001

[10]

. 范德华力对磁头/硬盘薄膜气体润滑动态特性的影响[J]. 摩擦学学报, 2008, 28(5):-139.

[11]

. 单节流孔静压球面气体轴承动态特性的有限元分析[J]. 摩擦学学报, 2003, 23(5):-139.

[12]

马春红, 白少先, 彭旭东, 李纪云. 螺旋槽端面微间隙高速气流润滑密封特性[J]. 摩擦学学报, 2015, 35(6):-139. doi: 10.16078/j.tribology.2015.06.008

[13]

. 非接触式气体润滑密封变形的数值分析[J]. 摩擦学学报, 2004, 24(6):-139.

[14]

柏林清, 白少先, 彭旭东, 孟祥铠, 李纪云. 倾斜微孔端面气体密封的动压特性研究[J]. 摩擦学学报, 2011, 31(2):-139.

[15]

. 激光加工多孔气体端面密封的静压性能研究[J]. 摩擦学学报, 2009, 29(3):-139.

[16]

路遵友, 吕延军, 张永芳, 康建雄, 刘成, 李莎. 考虑热弹性变形的角接触球轴承微观热弹流分析[J]. 摩擦学学报, 2018, 38(3):-139. doi: 10.16078/j.tribology.2018.03.007

[17]

马学忠, 孟祥铠, 王玉明, 沈明学, 彭旭东. 雷列台阶-环槽端面密封机理与性能研究[J]. 摩擦学学报, 2016, 36(5):-139. doi: 10.16078/j.tribology.2016.05.008

[18]

. 两体磨料磨损的三维动态模拟[J]. 摩擦学学报, 2000, 20(5):-139.

[19]

. 血液润滑膜组分的动态变化规律研究[J]. 摩擦学学报, 2006, 26(6):-139.

[20]

. 多孔状挤压油膜润滑铰机构动态特性研究[J]. 摩擦学学报, 2001, 21(4):-139.

  • 计量
    • PDF下载量 (5)
    • 文章访问量 (46)
    • HTML全文浏览量 (15)
    • 引证文献数  (0)
    目录

    Figures And Tables

    T型槽端面密封气膜热弹流润滑动态稳定性

    白少先, 魏佳, 朱得磊, 马春红