2019, 39(2):228-234. doi: 10.16078/j.tribology.2018146

孔隙渗流对环面复层含油轴承润滑性能的影响

合肥工业大学 机械工程学院,安徽 合肥 230009

通讯作者: 尹延国, abyin@sina.com

收稿日期: 2018-10-08
录用日期: 2018-12-06
网络出版日期: 2019-03-28

Effect of Porous Seepage on Lubrication Performance of Circular-Face Bilayer Oil Bearing

Hefei University of Technology, College of Mechanical Engineering, Anhui Hefei 230009, China

Corresponding author: Yanguo YIN, abyin@sina.com

Received Date: 08 Oct 2018
Accepted Date: 06 Dec 2018
Available Online: 28 Mar 2019

引用本文: 张国涛, 尹延国, 李蓉蓉, 许明, 李聪敏, 丁曙光. 孔隙渗流对环面复层含油轴承润滑性能的影响[J]. 摩擦学学报. doi: 10.16078/j.tribology.2018146.

Citation: Guotao ZHANG, Yanguo YIN, Rongrong LI, Ming XU, Congmin LI and Shuguang DING. Effect of Porous Seepage on Lubrication Performance of Circular-Face Bilayer Oil Bearing[J]. TRIBOLOGY.

含油轴承基体中油液的渗流特性对轴承油膜润滑性能影响显着. 以不同孔隙率分布的环面复层含油轴承为研究对象,利用达西定律建立复层含油轴承基体中流体渗流的控制方程,在极坐标下建立环面复层含油轴承系统渗流润滑模型,研究复层环面副系统中油膜压力分布规律,分析轴承结构参数及孔隙渗流行为对油膜润滑性能的影响. 结果表明:复层含油轴承的流体动压力主要发生在环形摩擦面间,从摩擦界面到轴承底面,流体压力逐渐由外缘向圆心部位传导,流体动压力作用面积逐渐增大,压力峰值逐渐降低;随着倾角增大,摩擦界面间的油膜动压效应增强,油膜润滑性能变好;随着表层渗透率或厚度减小,摩擦界面间的油膜的渗流效应减弱,油膜润滑性能提高;与普通单层含油轴承相比,含致密表层的复层含油轴承能降低整体孔隙率,防止过多轴承间隙油液渗入多孔介质,提高轴承润滑性能. 研究工作为明晰环面复层含油轴承渗流行为及润滑机理提供一定理论依据.

关键词: 复层含油轴承, 环面接触, 多孔, 渗流行为, 润滑特性
[1]

郭军. 铝青铜多孔轴承纳米C_(60)油脂释放机理研究[D]. 武汉: 华中科技大学, 2016.

Guo Jun. Releasing mechanism research for nano C_(60) grease of Al-bronze porous beaing[D]. Wuhan: Huazhong University of Science & Technology, 2016(in Chinese).

[2]

张建忠, 汪久根, 马家驹, 等. 微载荷含油轴承摩擦性能研究Ⅱ. 摩擦试验分析[J]. 摩擦学学报, 2006, 26(5): 472–477. doi: 10.3321/j.issn:1004-0595.2006.05.016

Zhang Jianzhong, Wang Jiugen, Ma Jiaju, et al. Tribological characteristics of porous beaing under micro-load Ⅱ. Experimental study of friction[J]. Tribology, 2006, 26(5): 472–477. doi: 10.3321/j.issn:1004-0595.2006.05.016

[3]

Patel R M, Deheri G M. Magnetic fluid based squeeze film between porous circular disks with sealed boundary[J]. Science in China Ser A, 2001(A1): 64–69.

[4]

Shimpi M E, Deheri G M. Surface roughness and elastic deformation effects on the behaviour of the magnetic fluid based squeeze film between rotating porous circular plates with concentric circular pockets[J]. Tribology in Industry, 2010, 32(2): 21–30.

[5]

AS Acharya, RM Patel, GM Deheri. Ferro fluid squeeze film in rough porous circular plates considering the effect of viscosity variation and velocity slip[J]. International Journal of Theoretical and Applied Mechanics, 2017, 12(4): 797–804.

[6]

Nabhani M, Khlifi M E. Non-Newtonian inertial magneto- hydrodynamic porous squeeze film lubrication between circular discs[J]. Tribology International, 2016, 94: 373–382. doi: 10.1016/j.triboint.2015.09.047

[7]

Ponnuswamy V, Govindaraj S. Behaviour of couple stress fluids in porous annular squeeze films[J]. Journal of Applied Mathematics & Physics, 2014, 2(6): 349–358.

[8]

Shah R C, Patel N I, Kataria R C. Some porous squeeze film-bearings using ferrofluid lubricant: A review with contributions[J]. Proceedings of the Institution of Mechanical Engineers Part J Journal of Engineering Tribology, 2016, 230(9): 1157–1171. doi: 10.1177/1350650116629096

[9]

Shah R C, Patel D B. Analysis and comparative study of ferrofluid lubricated circular porous squeeze film-bearings[J]. Proceedings of the Institution of Mechanical Engineers Part J Journal of Engineering Tribology, 2017, 231(11): 1450–1463. doi: 10.1177/1350650117698888

[10]

Kaneko S, Inoue H, Ushio K. Experimental study on mechanism of lubrication in porous journal bearings: 2nd Report, oil film formed in bearing clearance[J]. Verhandlungen Der Deutschen Gesellschaft Für Innere Medizin, 1991, 57(1): 185–192.

[11]

Kaneko S, Ohkawa Y. A Study on the mechanism of lubrication in porous journal bearings: theoretical investigation of oil film extent in bearing clearance under hydrodynamic lubrication conditions[J]. Nippon Kikai Gakkai Ronbunshu C Hen/transactions of the Japan Society of Mechanical Engineers Part C, 1992, 58(554): 3056–3062.

[12]

Zhang G T, Yin Y G, Xue L, et al. Effects of surface roughness and porous structure on the hydrodynamic lubrication of multi-layer oil bearing[J]. Industrial Lubrication and Tribology, 2017, 69(4): 455–463. doi: 10.1108/ILT-04-2016-0083

[13]

张国涛, 尹延国, 李吉宁, 等. 计入孔隙结构影响的复层含油轴承润滑特性分析[J]. 应用数学和力学, 2016, 37(8): 873–879.

Zhang Guotao, Yin Yanguo, Li Jining, et al. Effect of porous structure on the hydrodynamic lubrication of multi-layer oil bearing[J]. Applied Mathematics and Mechanics, 2016, 37(8): 873–879.

[14]

张国涛, 尹延国, 刘振明, 等. 流体润滑工况下复层烧结材料的润滑特性[J]. 复合材料学报, 2016, 33(12): 2807–2814.

Zhang Guotao, Yin Yanguo, Liu Zhenming, et al. Lubrication property of multi-layer sintering material under hydrodynamic lubrication[J]. Acta Materiae Compositae Sinica, 2016, 33(12): 2807–2814.

[15]

Naduvinamani N B. Non-Newtonian effects of second-order fluids on double-layered porous Rayleigh-step bearings[J]. Fluid Dynamics Research, 1997, 21(6): 495–507. doi: 10.1016/S0169-5983(97)00019-1

[16]

Li W L. Derivation of modified reynolds equation-A porous media model[J]. Journal of Tribology, 1999, 121(4): 823–829. doi: 10.1115/1.2834141

[17]

Rao T V V L N, Rani A M A, Awang M, et al. Stability analysis of double porous and surface porous layer journal bearing[J]. Tribology-Materials Surfaces & Interfaces, 2016, 10(1): 19–25.

[1]

符江锋, 李昆, 李华聪, 彭凯, 刘显为. 基于润滑特性仿真的燃油泵滑动轴承优化设计[J]. 摩擦学学报, 2018, 38(5):-234. doi: 10.16078/j.tribology.2018.05.003

[2]

石宏宇, 刘宇宏, 路新春. 生物黏液的润滑特性研究进展[J]. 摩擦学学报, 2016, 36(6):-234. doi: 10.16078/j.tribology.2016.06.017

[3]

肖华平, 郭丹, 刘书海, 路新春, 刘斌. 高压下受限齿轮油成膜特性研究[J]. 摩擦学学报, 2011, 31(6):-234.

[4]

邱优香, 王齐华, 王超, 王廷梅. 多孔聚酰亚胺含油材料的储油性能及摩擦学行为研究[J]. 摩擦学学报, 2012, 32(6):-234.

[5]

. 局部多孔质气体静压轴向轴承静态特性的数值求解[J]. 摩擦学学报, 2007, 27(1):-234.

[6]

. 多孔状挤压油膜润滑铰机构动态特性研究[J]. 摩擦学学报, 2001, 21(4):-234.

[7]

邱优香, 王齐华, 王超, 王廷梅. 结构可控多孔聚酰亚胺含油薄膜的制备及性能研究[J]. 摩擦学学报, 2012, 32(5):-234.

[8]

. 聚酰亚胺多孔含油材料的摩擦磨损性能研究[J]. 摩擦学学报, 2008, 28(3):-234.

[9]

白少先, 彭旭东, 孟祥铠. 激光多孔端面气体非接触机械密封稳定性分析[J]. 摩擦学学报, 2010, 30(6):-234.

[10]

. 多孔性镍基石墨复合电镀层的摩擦学特性研究[J]. 摩擦学学报, 1991, 11(4):-234.

[11]

申芳华, 李再久, 杨天武, 金青林, 蒋业华, 周荣. 规则多孔铜基自润滑材料的干摩擦磨损性能[J]. 摩擦学学报, 2012, 32(2):-234.

[12]

吴亮, 童宝宏, 郭丹, 马丽然, 胡晓磊. 油-气润滑流动行为对点接触副摩擦特性的影响[J]. 摩擦学学报, 2018, 38(6):-234. doi: 10.16078/j.tribology.2018034

[13]

季佳伟, 刘焜, 王伟. 激光微造型对粉末润滑界面边界层行为和润滑特性的影响[J]. 摩擦学学报, 2016, 36(3):-234. doi: 10.16078/j.tribology.2016.03.010

[14]

. 环面节流静压气体球轴承的相似准则[J]. 摩擦学学报, 2006, 26(3):-234.

[15]

. 新型环面节流静压气体球轴承压力分布的实验研究[J]. 摩擦学学报, 2005, 25(4):-234.

[16]

. 边界润滑状态下轴承钢接触疲劳寿命与其断裂特性参数相关性的试验研究[J]. 摩擦学学报, 1988, 8(1):-234.

[17]

. 精密角接触球轴承的固体润滑失效分析[J]. 摩擦学学报, 1995, 15(4):-234.

[18]

. 新型环面节流静压气体球轴承压力分布的有限元计算[J]. 摩擦学学报, 2004, 24(6):-234.

[19]

. 激光加工多孔气体端面密封的静压性能研究[J]. 摩擦学学报, 2009, 29(3):-234.

[20]

. 润滑滑动摩擦表面变质层特性的研究[J]. 摩擦学学报, 1995, 15(3):-234.

  • 计量
    • PDF下载量 (3)
    • 文章访问量 (33)
    • HTML全文浏览量 (14)
    • 引证文献数  (0)
    目录

    Figures And Tables

    孔隙渗流对环面复层含油轴承润滑性能的影响

    张国涛, 尹延国, 李蓉蓉, 许明, 李聪敏, 丁曙光