2019, 39(2):188-196. doi: 10.16078/j.tribology.2018149

中碳钢/不锈钢磁场摩擦中磨屑的行为和作用

河南科技大学 高端轴承摩擦学技术与应用国家地方联合工程实验室,河南 洛阳 471023

通讯作者: 张永振, yzzhang@haust.edu.cn

收稿日期: 2018-10-11
录用日期: 2018-11-29
网络出版日期: 2019-03-28

Behaviors and Effect of the Wear Debris during Friction between Medium-Carbon Steel and Stainless Steel with the Magnetic Field

National United Engineering Laboratory for Advanced Bearing Tribology, Henan University of Science and Technology, Henan Luoyang 471023, China

Corresponding author: Yongzhen ZHANG, yzzhang@haust.edu.cn

Received Date: 11 Oct 2018
Accepted Date: 29 Nov 2018
Available Online: 28 Mar 2019

引用本文: 石红信, 张永振, 孙超, 宋晨飞, 杜三明. 中碳钢/不锈钢磁场摩擦中磨屑的行为和作用[J]. 摩擦学学报. doi: 10.16078/j.tribology.2018149.

Citation: Hongxin SHI, Yongzhen ZHANG, Chao SUN, Chenfei SONG and Sanming DU. Behaviors and Effect of the Wear Debris during Friction between Medium-Carbon Steel and Stainless Steel with the Magnetic Field[J]. TRIBOLOGY.

以45钢销/302不锈钢盘摩擦副为研究对象,采用自制的销、盘摩擦磨损试验机,研究了直流磁场作用下磨屑在摩擦过程中的行为及其对摩擦磨损性能的作用. 为此分析了有、无磁场作用下磨屑在磨损面上的分布特点,利用扫描电镜观察了磨屑及45钢销磨损面的形貌,采用三维形貌仪表征了磨损面特征区域的相对高度. 与无磁场时的摩擦磨损情况相比,磁场作用下45钢销的磨损量有所增大,而摩擦系数稍有减小. 摩擦过程中出现了302不锈钢盘向45钢销的材料转移并形成了不连续的转移层,该转移层相对高度较大,承担了主要的摩擦磨损并趋于平滑. 磁场作用下45钢销磨损面吸附少量磨屑并使之细化和氧化,该吸附磨屑在一定程度上减小了摩擦副的摩擦系数,并阻碍试样之间的材料转移,从而增加了45钢销的磨损量.

关键词: 磁场, 不锈钢, 中碳钢, 干摩擦, 磨屑, 材料转移
[1]

K Kumagai, K Suzuki, O Kamiya. Study on reduction in wear due to magnetization[J]. Wear, 1993, 162-164: 196–201. doi: 10.1016/0043-1648(93)90501-C

[2]

H Han, S Du, Y Zhang, et al. Effect of DC magnetic field in friction and wear properties of 45 steel at different velocities[J]. Tribology Letters, 2016, 64: 38. doi: 10.1007/s11249-016-0754-z

[3]

K Hiratsuka, T Sasada, S Norose. The magnetic effect on the wear of metals[J]. Wear, 1986, 110: 251–261. doi: 10.1016/0043-1648(86)90102-X

[4]

Y Wei, Y Zhang, Y Chen, et al. Impact of material permeability on friction and wear properties under the interference of DC steady magnetic field[J]. Tribology International, 2013, 57: 162–169. doi: 10.1016/j.triboint.2012.07.019

[5]

H Zaidi, L Pan, D Paulmier, et al. Influence of a magnetic field on the wear and friction behaviour of a nickel/XC 48 steel couple[J]. Wear, 1998, 181-183: 799–804.

[6]

HY Bi, ZJ Wang. Wear of medium carbon steel in the presence of Nd-Fe-B permanent magnetic field[J]. Materials Letters, 2003, 57: 1752–1755. doi: 10.1016/S0167-577X(02)01063-7

[7]

A F Yetim, H Kovaci, M Aslan, et al. The effect of magnetic field on the wear properties of a ferromagnetic steel[J]. Wear, 2013, 301: 636–640. doi: 10.1016/j.wear.2012.11.077

[8]

董祥林, 简小刚, 毕红运, 等. 磁场对中碳钢滑动摩擦磨损的影响[J]. 金属学报, 1999(6): 577–580.

Dong Xianglin, Jian Xiaogang, Bi Hongyun, et al. Effect of a magnetic field on sliding friction and wear of medium carbon steel[J]. ACTA Metallurgica Sinica, 1999(6): 577–580.

[9]

D Paulmier, H Zaidi, R Bediri, et al. Steel surface modifications in magnetised contact[J]. Surface and Coatings Technology, 1995, 76-77: 583–588. doi: 10.1016/0257-8972(95)02607-X

[10]

H Zaidi, A Senouci. Influence of magnetic field on surface modification and the friction behavior of sliding of sliding couple aluminium/XC 48 steel[J]. Surface and Coatings Technology, 1995, 120-121: 653–658.

[11]

KJ Chin, H Zaidi, M T Nguyen, et al. Tribological behavior and surface analysis magnetized sliding contact XC48 steel/ XC48 steel[J]. Wear, 2001, 250: 470–476. doi: 10.1016/S0043-1648(01)00658-5

[12]

H Zaidi, K J Chin, J Frene. Analysis of surface and subsurface of sliding electrical contact steel/steel in magnetic field[J]. Surface and Coating Technology, 2001, 148: 241–250. doi: 10.1016/S0257-8972(01)01355-X

[13]

T A. Stolarski, Y Maiida Influence of magnetic filed on wear in high frequency reciprocating sliding contacts[J]. Tribology International, 2001, 44: 1004–1013.

[14]

TA Stolarski, Y Makida. Influence of permanent magnetic field on wear performance of dry sliding contacts[J]. Wear, 2001, 271: 1109–1123.

[15]

J Jiang, Y Tian, Y Meng. Role of external magnetic filed during friction of ferromagnetic materials[J]. Wear, 2011, 271: 2991–2997. doi: 10.1016/j.wear.2011.07.003

[16]

K Hiratsuka, T Sasada. Wear of metals in a magnetic field[J]. Wear, 1993, 160: 119–123. doi: 10.1016/0043-1648(93)90412-F

[17]

M Amirat, H Zaidi, A Senouci. Nucleation and formation of oxide film with the magnetic field on dry sliding contact of ferromagnetic steel[J]. Lubrication Science, 2011, 23: 19–31. doi: 10.1002/ls.v23.1

[18]

K J Chin, H Zaidi, T Mathia. Oxide film formation in magnetized sliding steel/steel contact-analysis of the contact stress field and film failure mode[J]. Wear, 2005, 259: 477–481. doi: 10.1016/j.wear.2005.02.122

[19]

H Zaidi, M Amirat, J Frene T Mathis, et al. Magnetotribology of ferromagnetic/ ferromagnetic sliding couple[J]. Wear, 2007, 263: 1518–1526. doi: 10.1016/j.wear.2007.01.081

[20]

H Han, Y Gao, Y Zhang, et al. Effect of magnetic field distribution of friction surface on friction and wear properties of 45 steel in DC magnetic field[J]. Wear, 2015, 328-329: 422–435. doi: 10.1016/j.wear.2015.02.062

[21]

M Varenberg, G Halperin, I Etsion. Different aspects of the role of wear debris in fretting wear[J]. Wear, 2002, 252: 902–910. doi: 10.1016/S0043-1648(02)00044-3

[22]

M Mosleh, B A Khemet. A surface texturing approach for cleaner disc brakes[J]. Tribology Transactions, 2006, 49: 279–283. doi: 10.1080/05698190600639913

[23]

J Y Xu, J L Mo, B Huang, et al. Reducing friction-induced vibration and noise by clearing wear debris from contact surface by blowing air and adding magnetic field[J]. Wear, 2018, 408-409: 238–247. doi: 10.1016/j.wear.2018.05.018

[24]

J S Sheasby, J H Vandergeest. Debris control in dry wear testing[J]. Wear, 1981, 73: 283–294. doi: 10.1016/0043-1648(81)90296-9

[25]

韩红彪. 直流磁场干摩擦的耦合作用机制研究[D]. 西北工业大学, 2015.

Han Hongbiao. Study on coupling mechanism of dry friction in DC magnetic field[D]. Northwestern Polytechnical University, 2015(in Chinese).

[26]

董秀文, 李岩, 陈淑兰, 等. 弱磁性奥氏体不锈钢磁导率的测量[J]. 检验检疫科学, 2004, 14(3): 51–53. doi: 10.3969/j.issn.1674-5354.2004.03.016

Dong Xiuwen, Li Yan, Chen Shulan, et al. Measurement of permeability of weak magnetic austenitic stainless steel[J]. Inspection and Quarantine Science, 2004, 14(3): 51–53. doi: 10.3969/j.issn.1674-5354.2004.03.016

[27]

K Zhao, J Fan, F Gao, e al. Research on trio-magnetization phenomenon of ferromagnetic materials under dry reciprocating sliding[J]. Tribology International, 2015(92): 146–153.

[28]

W D Marscher. A critical evaluation of the flash-temperature concept[J]. ASLE Transactions, 1981, 25(2): 157–174.

[29]

朱宝亮, 杨兆雄, 刘家浚. 滑动接触中摩擦温度的测定及其影响[J]. 固体润滑, 1989, 9(1): 23–29.

Zhu Baoliang, Yang Zhaoxiong, Liu Jiajun. The measurement of frictional temperature and its effect in sliding contact[J]. Solid Lubrication, 1989, 9(1): 23–29.

[30]

G Sutter, N Ranc. Flash temperature measurement during dry friction process at high sliding speed[J]. Wear, 2010, 268: 1237–1242. doi: 10.1016/j.wear.2010.01.019

[31]

徐祖耀. 金属材料热力学[M]. 北京: 科学出版社, 1981: 242.

Xu Zuyao. Thermodynamics of metallic materials[M]. Beijing: Science Press, 1981: 242(in Chinese).

[32]

张人佶, 朱宝亮, 刘家浚, 等. H70黄铜-0Cr18Ni9不锈钢滑动磨损表面材料的相互转移之研究[J]. 固体润滑, 1990, 10(3): 178–184.

Zhang Renjie, Zhu Baoliang, Liu Jiajun, et. al Mutual transfer of materials for dry sliding of brass against stainless steel[J]. Solid Lubrication, 1990, 10(3): 178–184.

[33]

王清宝, 王智慧, 李世敏. Fe-Cr-C系高碳耐磨堆焊合金组织及性能[J]. 焊接学报, 2004, 25(6): 119–123. doi: 10.3321/j.issn:0253-360X.2004.06.032

Wang Qingbao, Wang Zhihui, Li Shimin. Microstructures and properties of Fe-Cr-C hardfacing alloys with high carbon content[J]. Transactions of the China Welding Institution, 2004, 25(6): 119–123. doi: 10.3321/j.issn:0253-360X.2004.06.032

[1]

. 表面纳米化中碳钢在干摩擦条件下的摩擦磨损性能研究[J]. 摩擦学学报, 2008, 28(1):-196.

[2]

王凤梅, 谢敬佩, 李炎, 马窦琴, 刘舒. 外加磁场对W-20Cu/45钢摩擦副干摩擦特性影响的实验研究[J]. 摩擦学学报, 2015, 35(3):-196. doi: 10.16078/j.tribology.2015.03.007

[3]

谢瑜龙, 孙超, 张永振, 石红信, 宋晨飞, 杜三明. 碳含量对碳素钢磁场摩擦磨损性能的影响与作用机制研究[J]. 摩擦学学报, 2019, 39(1):-196. doi: 10.16078/j.tribology.2018132

[4]

宋剑, 廖振华, 王松, 刘宇宏, 刘伟强. 人工关节材料磨屑分离与表征的研究进展[J]. 摩擦学学报, 2016, 36(3):-196. doi: 10.16078/j.tribology.2016.03.017

[5]

任书芳, 孟军虎, 吕晋军, 杨生荣. Ti3SiC2、不锈钢和NiCr合金在人工海水中的摩擦学性能[J]. 摩擦学学报, 2013, 33(4):-196.

[6]

苏峰华, 毛川, 李助军. 织构深度对不锈钢表面油润滑条件下摩擦学性能影响的试验和仿真研究[J]. 摩擦学学报, 2019, 39(2):-196. doi: 10.16078/j.tribology.2018143

[7]

魏永辉, 张永振, 陈跃. 锌黄铜-铝合金互配副干摩擦学特性的磁场干涉机制研究[J]. 摩擦学学报, 2013, 33(2):-196.

[8]

江泽琦, 方建华, 陈波水, 吴江, 郑哲, 刘宇航, 李昊. 磁场作用下基础油和含磷酸三甲酚酯润滑油的摩擦磨损特性[J]. 摩擦学学报, 2016, 36(5):-196. doi: 10.16078/j.tribology.2016.05.006

[9]

. 一种高碳钢低温干摩擦行为的研究[J]. 摩擦学学报, 2008, 28(5):-196.

[10]

王棒棒, 胡恩柱, 胡献国, 史彬, 杨伟, 胡坤宏, 宋汝鸿, 杨炳训. 固体润滑剂对稻壳基陶瓷材料干摩擦行为的影响[J]. 摩擦学学报, 2018, 38(2):-196. doi: 10.16078/j.tribology.2018.02.007

[11]

王斌, 常秋英, 齐烨. 激光表面织构对不同材料干摩擦特性的影响[J]. 摩擦学学报, 2014, 34(4):-196.

[12]

江俊佑, 李秀艳. SUS304奥氏体不锈钢摩擦跑和阶段的摩擦表面层演变及其对摩擦行为的影响[J]. 摩擦学学报, 2018, 38(1):-196. doi: 10.16078/j.tribology.2018.01.005

[13]

. 铸态铝基复合材料与半金属衬片摩擦副的干滑动摩擦磨损特性研究[J]. 摩擦学学报, 2008, 28(3):-196.

[14]

朱章杨, 莫继良, 王东伟, 李建熹, 陈光雄, 朱旻昊. 沟槽对界面振动及摩擦磨损特性的影响[J]. 摩擦学学报, 2017, 37(4):-196. doi: 10.16078/j.tribology.2017.04.018

[15]

. Co+C离子注入层的摩擦磨损行为研究[J]. 摩擦学学报, 2006, 26(2):-196.

[16]

. 磁性流体密封磁场的解耦计算[J]. 摩擦学学报, 2006, 26(3):-196.

[17]

. 在线铁谱仪电磁装置磁场的有限元分析[J]. 摩擦学学报, 2004, 24(2):-196.

[18]

董志伟, 万勇, 屠婷婷, 姚文清. 45#钢表面织构上硬脂酸薄膜减摩性能的研究[J]. 摩擦学学报, 2014, 34(1):-196.

[19]

江泽琦, 方建华, 陈飞, 王鑫, 陈波水, 谷科城, 吴江, 王九. 摩擦电物理和摩擦电化学机理的研究进展[J]. 摩擦学学报, 2017, 37(5):-196. doi: 10.16078/j.tribology.2017.05.018

[20]

常铁, 袁成清, 郭智威. 老化状态下的UHMWPE干摩擦行为研究[J]. 摩擦学学报, 2018, 38(4):-196. doi: 10.16078/j.tribology.2018.04.012

  • 计量
    • PDF下载量 (2)
    • 文章访问量 (37)
    • HTML全文浏览量 (14)
    • 引证文献数  (0)
    目录

    Figures And Tables

    中碳钢/不锈钢磁场摩擦中磨屑的行为和作用

    石红信, 张永振, 孙超, 宋晨飞, 杜三明