2019, 39(2):150-156. doi: 10.16078/j.tribology.2018076

基于分形理论的双渐开线齿轮接触应力研究

青岛科技大学 机电工程学院,山东 青岛 266061

通讯作者: 樊智敏, zmfan@163.com

收稿日期: 2018-07-04
录用日期: 2018-11-29
网络出版日期: 2019-03-28

Contact Stress of Double Involute Gear Based on Fractal Theory

College of Electromechanical Engineering, Qingdao University of Science and Technology, Shandong Qingdao 266061, China

Corresponding author: Zhimin FAN, zmfan@163.com

Received Date: 04 Jul 2018
Accepted Date: 29 Nov 2018
Available Online: 28 Mar 2019

引用本文: 樊智敏, 张秀文, 马永东. 基于分形理论的双渐开线齿轮接触应力研究[J]. 摩擦学学报. doi: 10.16078/j.tribology.2018076.

Citation: Zhimin FAN, Xiuwen ZHANG and Yongdong MA. Contact Stress of Double Involute Gear Based on Fractal Theory[J]. TRIBOLOGY.

综合考虑接触面粗糙度、材料特性等因素对齿轮接触应力的影响,基于分形理论和经典Hertz接触理论建立双渐开线齿轮分形接触模型. 该模型中,影响载荷和实际接触面积的主要因素包括分形维数、粗糙度幅值和材料特性参数. 理论分析表明:分形维数一定时,真实接触面积随着载荷的增大而增大;载荷一定时,接触面积随着粗糙度幅值的增大而减小;随着材料特性参数值的增加,在一定程度上加强了软材料轮齿承载能力,同时会使得微凸体由弹性变形到塑性变形的临界面积减小. 对比分形接触模型和有限元模型两种计算双渐开线齿轮轮齿接触应力方法,结果证明了分形接触模型计算双渐开线齿轮接触应力的有效性.

关键词: 双渐开线齿轮, 接触强度, 分形理论, Hertz接触理论, 有限元
[1]

Johnson K L. Contact mechanics[M]. London: Cambridge University Press, 1985..

[2]

Bhushan B. Introduction to Tribology[M]. New York: John Wiley&sons, 2002..

[3]

Majumdar A, Bhushan B. Fractal model of elastic-plastic contact between rough surfaces[J]. Transactions of ASME, Journal of Tribology, 1991, 113(1): 1–11. doi: 10.1115/1.2920588

[4]

Wang S, Komvopoulos K. A fractal theory of the interfacial temperature distribution in the slow sliding regime: part l-elastic contact and heat transfer analysis[J]. Transactions of ASME, Journal of Tribology, 1994, 116(4): 812–823. doi: 10.1115/1.2927338

[5]

黄康, 赵韩, 陈奇. 两圆柱体表面接触承载能力的分形模型研究[J]. 摩擦学学报, 2008, 28(6): 529–533. doi: 10.3321/j.issn:1004-0595.2008.06.009

Huang Kang, Zhao Han, Chen Qi. Research of fractal contact model on contact carrying capacity of two cylinders’ surface[J]. Tribology, 2008, 28(6): 529–533. doi: 10.3321/j.issn:1004-0595.2008.06.009

[6]

赵韩, 陈奇, 黄康. 两圆柱体结合面的法向接触刚度分形模型[J]. 机械工程学报, 2011, 44(47): 53–58.

Zhao Han, Chen Qi, Huang Kang. Fractal model of normal contact stiffness between two cylinders’ joint interfaces[J]. Journal of Mechanical Engineering, 2011, 44(47): 53–58.

[7]

刘鹏, 赵韩, 黄康, 等. 线段齿轮法向接触刚度的改进分形模型研究[J]. 机械工程学报, 2018, 54(7): 114–122.

Liu Peng, Zhao Han, Huang Kang, et al. Research on normal contact stiffness of micro-segments gear based on improved fractal model[J]. Journal of Mechanical Engineering, 2018, 54(7): 114–122.

[8]

陈奇, 黄康, 张彦, 等. 基于分形接触模型的齿轮接触强度影响参数分析[J]. 中国机械工程, 2013, 24(16): 2208–2211. doi: 10.3969/j.issn.1004-132X.2013.16.015

Chen Qi, Huang Kang, Zhang Yan, et al. Analysis of influence on gear’s contact strength based on fractal contact model[J]. China Mechanical Engineering, 2013, 24(16): 2208–2211. doi: 10.3969/j.issn.1004-132X.2013.16.015

[9]

葛世荣, 朱华.摩擦学的分形[M].北京:机械工业出版社, 2005.

Ge Shirong, Zhu Hua. Fractal tribology[M]. Beijing: China Machine Press, 2005(in Chinese).

[10]

陈国安, 葛世荣. 基于分形理论的磨合磨损预测模型[J]. 机械工程学报, 2000, 36(2): 29–33. doi: 10.3321/j.issn:0577-6686.2000.02.009

Chen Guoan, Ge Shirong. Prediction model of sliding wear during running-in process based on fractal theory[J]. Chinese Journal of Mechanical Engineering, 2000, 36(2): 29–33. doi: 10.3321/j.issn:0577-6686.2000.02.009

[11]

徐帆, 陈奇, 马运波, 等. 考虑润滑因素的两圆柱体接触承载能力的分形模型研究[J]. 合肥工业大学学报(自然科学版), 2017, 40(2): 169–174. doi: 10.3969/j.issn.1003-5060.2017.02.006

Xu Fan, Chen Qi, Ma Yunbo, et al. Research on fractal contact model for contact carrying capacity of two cylinders, surfaces considering lubrication factors[J]. Journal of Hefei University of Technology, 2017, 40(2): 169–174. doi: 10.3969/j.issn.1003-5060.2017.02.006

[12]

张光辉, 许洪斌, 龙慧. 分阶式双渐开线齿轮[J]. 机械工程学报, 1995, 31(6): 47–52. doi: 10.3321/j.issn:0577-6686.1995.06.016

Zhang Guanghui, Xu Hongbin, Long Hui. Fractional double involute gear[J]. Chinese Journal of Mechanical Engineering, 1995, 31(6): 47–52. doi: 10.3321/j.issn:0577-6686.1995.06.016

[13]

许洪斌, 张光辉, 加藤正名. 分阶式双渐开线齿轮的光弹试验与弯曲强度试验研究[J]. 机械工程学报, 2000, 36(8): 39–42. doi: 10.3321/j.issn:0577-6686.2000.08.009

Xu Hongbin, Zhang Guanghui, Jiateng Zhengming. Study on photoelastic test and bending strength test of fractional double involute gear[J]. Chinese Journal of Mechanical Engineering, 2000, 36(8): 39–42. doi: 10.3321/j.issn:0577-6686.2000.08.009

[14]

许洪斌, 张光辉, 加藤正名. 分阶式双渐开线齿轮弯曲强度的研究[J]. 中国机械工程, 1999, 10(11): 1267–1269. doi: 10.3321/j.issn:1004-132X.1999.11.020

Xu Hongbin, Zhang Guanghui, Jiateng Zhengming. Study on bending strength of fractional double involute gear[J]. China Mechanical Engineering, 1999, 10(11): 1267–1269. doi: 10.3321/j.issn:1004-132X.1999.11.020

[15]

汤中连.齿面粗糙度对齿轮传动接触疲劳应力的影响[D].太原:太原理工大学, 2011.

Tang Zhonglian. Influence of tooth face roughness on gearing contact fatigue stress[D]. Taiyuan: Taiyuan University of Technology, 2011(in Chinese).

[16]

高创宽, 周谋, 亓秀梅. 齿面摩擦力对齿轮接触应力的影响[J]. 机械强度, 2003, 25(6): 642–645. doi: 10.3321/j.issn:1001-9669.2003.06.011

Gao Chuangkuan, Zhou Mou, Qi Xiumei. Effect of gear tooth friction force on gear contact stress[J]. Mechanical Strength, 2003, 25(6): 642–645. doi: 10.3321/j.issn:1001-9669.2003.06.011

[17]

樊智敏, 张光辉. 分阶式双渐开线齿轮啮合特性分析[J]. 机械工程学报, 2002, 38(9): 73–76. doi: 10.3321/j.issn:0577-6686.2002.09.016

Fan Zhimin, Zhang Guanghui. Analysis of meshing characteristics of double involute gear with fractional order[J]. Chinese Journal of Mechanical Engineering, 2002, 38(9): 73–76. doi: 10.3321/j.issn:0577-6686.2002.09.016

[18]

濮良贵, 纪名刚.机械设计[M].北京:高等教育出版社, 2001.

Pu Lianggui, Ji Minggang. Mechanical design[M]. Beijing: Higher Education Press, 2001(in Chinese).

[19]

陈奇. 基于分形理论的汽车变速箱齿轮接触强度研究[D].合肥: 合肥工业大学, 2010.

Chen Qi. Research on gear contact strength analysis of automobile gearbox by fractal theory[D]. Hefei: Hefei University of Technology, 2010(in Chinese).

[20]

葛世荣. 粗糙表面的分形特征与分形表达研究[J]. 摩擦学学报, 1997, 17(1): 73–80. doi: 10.3321/j.issn:1004-0595.1997.01.011

Ge Shirong. The fractal behavior and fractal characterization of rough surfaces[J]. Tribology, 1997, 17(1): 73–80. doi: 10.3321/j.issn:1004-0595.1997.01.011

[1]

赵波, 戴旭东, 张执南, 谢友柏, 张勇. 单峰接触研究及其在分形表面接触中的应用[J]. 摩擦学学报, 2014, 34(2):-156.

[2]

孙宝财, 丁雪兴, 陈金林, 张伟政, 严如奇. 干气密封滑动摩擦界面切向接触刚度分形模型[J]. 摩擦学学报, 2019, 39(1):-156. doi: 10.16078/j.tribology.2018061

[3]

党兴武, 马晓. 微凸体碰撞对接触应力应变的影响[J]. 摩擦学学报, 2017, 37(1):-156. doi: 10.16078/j.tribology.2017.01.002

[4]

. 磁头/磁盘滑动接触下磁盘温度及热退磁临界条件的研究[J]. 摩擦学学报, 2005, 25(5):-156.

[5]

顾林峰, 孟祥铠, 李纪云, 彭旭东. 基于半光滑牛顿法的润滑液膜有限元空化算法[J]. 摩擦学学报, 2016, 36(3):-156. doi: 10.16078/j.tribology.2016.03.004

[6]

魏龙, 张鹏高, 刘其和, 房桂芳. 基于平均膜厚和压力流量因子的机械密封泄漏分形模型[J]. 摩擦学学报, 2018, 38(6):-156. doi: 10.16078/j.tribology.2018015

[7]

. 多粗糙峰弹塑性接触的有限元分析[J]. 摩擦学学报, 2000, 20(3):-156.

[8]

. 钢轨轨缝接触-冲击的有限元分析[J]. 摩擦学学报, 2003, 23(3):-156.

[9]

邹玉静, 常德功. 基于载荷分担理论的渐开线斜齿轮热混合弹流润滑分析[J]. 摩擦学学报, 2015, 35(4):-156. doi: 10.16078/j.tribology.2015.04.019

[10]

苑士华, 董辉立, 李雪原. 基于MEPE和EHL理论的渐开线斜齿轮啮合特性分析[J]. 摩擦学学报, 2012, 32(3):-156.

[11]

朱有利, 王燕礼, 边飞龙, 候帅, 杨红军. 渐开线直齿圆柱齿轮接触疲劳失效成因再分析[J]. 摩擦学学报, 2014, 34(6):-156.

[12]

尹延国, 邢大淼, 尤涛, 俞建卫, 魏巍. 基于有限元法的面接触摩擦热流分配系数反推研究[J]. 摩擦学学报, 2012, 32(6):-156.

[13]

王志坚, 沈雪瑾, 陈晓阳, 周越, 华同曙. 有限长线接触弹流理论研究的最新进展[J]. 摩擦学学报, 2016, 36(1):-156. doi: 10.16078/j.tribology.2016.01.018

[14]

冯剑军, 谭援强. 基于Hertz 理论圆柱和平面之间的滑动接触分析[J]. 摩擦学学报, 2009, 29(4):-156.

[15]

施渊吉, 黎军顽, 吴晓春, 左鹏鹏, 周路海. 汽车法兰盘热锻模具磨损失效的实验分析和数值研究[J]. 摩擦学学报, 2016, 36(2):-156. doi: 10.16078/j.tribology.2016.02.011

[16]

王雪萍, 张军, 马贺. 高速列车车轮踏面磨耗预测方法的研究[J]. 摩擦学学报, 2018, 38(4):-156. doi: 10.16078/j.tribology.2018.04.011

[17]

. 轮轨滚动摩擦温升分析[J]. 摩擦学学报, 2005, 25(4):-156.

[18]

王小燕, 孟祥铠, 刘鑫, 盛颂恩, 彭旭东. 核主泵用流体动压型机械密封耦合模型与性能分析[J]. 摩擦学学报, 2013, 33(2):-156.

[19]

马学忠, 孟祥铠, 王玉明, 沈明学, 彭旭东. 雷列台阶-环槽端面密封机理与性能研究[J]. 摩擦学学报, 2016, 36(5):-156. doi: 10.16078/j.tribology.2016.05.008

[20]

. 全制动工况下轮轨热-机耦合效应的分析[J]. 摩擦学学报, 2006, 26(5):-156.

  • 计量
    • PDF下载量 (2)
    • 文章访问量 (38)
    • HTML全文浏览量 (15)
    • 引证文献数  (0)
    目录

    Figures And Tables

    基于分形理论的双渐开线齿轮接触应力研究

    樊智敏, 张秀文, 马永东