2019, 39(2):197-205. doi: 10.16078/j.tribology.2018004

界面调控对类金刚石碳基薄膜/铜摩擦副摩擦学行为的影响

1. 

兰州交通大学 机电工程学院,甘肃 兰州 730000

2. 

万博体育APP不能用了吗_万博体育app登入不了苹果_万博博彩 app万博 app 固体润滑国家重点实验室,甘肃 兰州 730000

3. 

中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室,浙江 宁波 315201

通讯作者: 鲁志斌, zblu@licp.cas.cn蒲吉斌, pujibin@nimte.ac.cn

收稿日期: 2018-04-10
录用日期: 2019-01-11
网络出版日期: 2019-03-28

Effects of Interface Tailoring on Tribological Properties of Diamond-like Carbon Based Film/Cu System

1. 

School of Mechatronic Engineering, Lanzhou Jiaotong University, Gansu Lanzhou 730000, China

2. 

State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Gansu Lanzhou 730000, China

3. 

Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Zhejiang Ningbo 315201, China

Corresponding author: Zhibin LU, zblu@licp.cas.cnJibin PU, pujibin@nimte.ac.cn

Received Date: 10 Apr 2018
Accepted Date: 11 Jan 2019
Available Online: 28 Mar 2019

引用本文: 吴刊选, 刘增家, 郑韶先, 张广安, 李霞, 鲁志斌, 蒲吉斌. 界面调控对类金刚石碳基薄膜/铜摩擦副摩擦学行为的影响[J]. 摩擦学学报. doi: 10.16078/j.tribology.2018004.

Citation: Kanxuan WU, Zengjia LIU, Shaoxian ZHENG, Guangan ZHANG, Xia LI, Zhibin LU and Jibin PU. Effects of Interface Tailoring on Tribological Properties of Diamond-like Carbon Based Film/Cu System[J]. TRIBOLOGY.

无氢DLC/金属铜摩擦副体系摩擦系数高且不易调控,调整DLC/金属铜摩擦界面从而降低其摩擦系数是亟待解决的问题. 本研究中通过制备含氢与无氢类金刚石碳基薄膜,采用试验分析与模拟计算结合的方法研究了不同氢含量碳基薄膜与铜配副的摩擦学特性并讨论了氢原子在摩擦界面对改善摩擦学性能所起的作用. 结果表明:摩擦界面的结构特性对于类金刚石碳基薄膜/铜配副体系摩擦学性能有非常重要的影响,氢原子可以通过减小摩擦副之间的黏着从而起到调节摩擦界面的作用. 通过向DLC中掺杂氢等钝化元素可有效调控界面处的相互作用从而调控体系摩擦学性能. 本研究方法为降低DLC/铜摩擦副体系摩擦系数提供参考.

关键词: 类金刚石碳基薄膜, 调节, 摩擦界面, 黏着
[1]

薛群基, 王立平.类金刚石碳基薄膜材料[M]. 北京: 科学出版社, 2012: 1–50.

Xue Qunji, Wang Liping. Diamond-like carbon based film material[M]. Beijing: Science Press, 2012: 1–50(in Chinese).

[2]

Y Qi, E Konca, A T Alpas. Atmospheric effects on the adhesion and friction between non-hydrogenated diamond-like carbon (DLC) coating and aluminum-a first principles investigation[J]. Surface Science, 2006, 600(15): 2955–2965. doi: 10.1016/j.susc.2006.05.008

[3]

张艳, 东梅, 李媚, 等. 纳尺度下类金刚石(DLC)薄膜摩擦性能研究[J]. 摩擦学学报, 2015, 35(2): 242–248. doi: 10.16078/j.tribology.2015.02.017

Zhang Yan, Dong Mei, Li Mei, et al. Investigation on the nano-friction properties of diamond-like carbon films[J]. Tribology, 2015, 35(2): 242–248. doi: 10.16078/j.tribology.2015.02.017

[4]

王福, 鲁志斌, 张广安, 等. 氟化非晶碳基薄膜摩擦学行为对配副材料的依赖性[J]. 摩擦学学报, 2017, 37(3): 357–363. doi: 10.16078/j.tribology.2017.03.011

Wang Fu, Lu Zhibin, Zhang Guangan, et al. Mating material-dependence of tribological behavior of fluorinated amorphous carbon-based films[J]. Tribology, 2017, 37(3): 357–363. doi: 10.16078/j.tribology.2017.03.011

[5]

韩熙, 郑建云, 张帅拓, 等. Al-DLC薄膜结构及其在水介质下摩擦学性能研究[J]. 摩擦学学报, 2017, 37(3): 310–317. doi: 10.16078/j.tribology.2017.03.005

Han Xi, Zheng Jianyun, Zhang Shuaituo, et al. Microstructure and tribological properties of Al-DLC coatings in water[J]. Tribology, 2017, 37(3): 310–317. doi: 10.16078/j.tribology.2017.03.005

[6]

关晓艳, 王永欣, 王立平, 等. 非晶碳基薄膜材料水环境摩擦学研究进展[J]. 摩擦学学报, 2017, 37(02): 270–282.

Guan Xiaoyan, Wang Yongxin, Wang Liping, et al. Progress in tribological performances of carbon-based films in liquid lubrication environments[J]. Tribology, 2017, 37(02): 270–282.

[7]

许伟, 代明江, 林松盛, 等. 掺W类金刚石薄膜的高温摩擦学行为[J]. 摩擦学学报, 2017, 37(3): 379–386. doi: 10.16078/j.tribology.2017.03.014

Xu Wei, Dai Mingjiang, Lin Songsheng, et al. High temperature tribological behavior of W-doped diamond-like carbon films[J]. Tribology, 2017, 37(3): 379–386. doi: 10.16078/j.tribology.2017.03.014

[8]

Erdemir A, Donnet C. Tribology of diamond-like carbon films: recent progress and future prospects[J]. Journal of Physics D Applied Physics, 2006, 39(18): R311. doi: 10.1088/0022-3727/39/18/R01

[9]

Langer H, Textorius B. Influence of sliding mating materials on the tribological behavior of diamond-like carbon films[J]. Thin Solid Films, 1999, 352(1-2): 145–150. doi: 10.1016/S0040-6090(99)00283-7

[10]

Erdemir A. The role of hydrogen in tribological properties of diamond-like carbon films[J]. Surface & Coatings Technology, 2001, s146-147(1): 292–297.

[11]

Bhowmick S, Sen F G, Banerji A, et al. Friction and adhesion of fluorine containing hydrophobic hydrogenated diamond-like carbon (F-H-DLC) coating against magnesium alloy AZ91[J]. Surface & Coatings Technology, 2015, 267(2): 21–31.

[12]

H Guo, Y Qi, X Li. Predicting the hydrogen pressure to achieve ultralow friction at diamond and diamondlike carbon surfaces from first principles[J]. Applied Physics Letter, 2008, 92(24): 241921. doi: 10.1063/1.2946661

[13]

Zengjia Liu, Shaoxian Zheng, Zhibin Lu, et al. Adhesive transfer at copper/diamond interface and adhesion reduction mechanism with fluorine passivation: A first-principles study[J]. Carbon, 2018, 127: 548–556. doi: 10.1016/j.carbon.2017.11.027

[14]

W R Lambrecht. Electronic structure of copper/diamond interfaces including effects of interfacial hydrogen[J]. Physica B: Condensed Matter, 1993, 185(1-4): 512–527. doi: 10.1016/0921-4526(93)90289-I

[15]

Konca E, Cheng Y T, Alpas A T. Dry sliding behaviour of non-hydrogenated DLC coatings against Al, Cu and Ti in ambient air and argon[J]. Diamond & Related Materials, 2006, 15(4-8): 939–943.

[16]

Qi Y, Hector Jr L G. Hydrogen effect on adhesion and adhesive transfer at aluminum/diamond interfaces[J]. Physical Review B, 2003, 68(20): 201403. doi: 10.1103/PhysRevB.68.201403

[17]

Cui L, Lu Z, Wang L. Toward low friction in high vacuum for hydrogenated diamondlike carbon by tailoring sliding interface[J]. ACS Applied Materials & Interfaces, 2013, 5(13): 5889–5893.

[18]

Qi Y, Hector Jr L G. Adhesion and adhesive transfer at aluminum/diamond interfaces: a first-principles study[J]. Physical Review B, 2004, 69(23): 235401. doi: 10.1103/PhysRevB.69.235401

[19]

Wang X G, Smith J R. Copper/diamond adhesion and hydrogen termination[J]. Physical Review Letters, 2001, 87(18): 186103. doi: 10.1103/PhysRevLett.87.186103

[20]

Tiwari A K, Goss J P, Briddon P R, et al. Electronic and structural properties of diamond (001) surfaces terminated by selected transition metals[J]. Physical Review B, 2012, 86(15): 155301. doi: 10.1103/PhysRevB.86.155301

[21]

白秀琴, 李健, 严新平. DLC薄膜的表面形貌及其摩擦学性能研究[J]. 润滑与密封, 2005(4): 19–21. doi: 10.3969/j.issn.0254-0150.2005.04.007

Bai Xiuqin, Li Jian, Yan Xinping. Study on the surface topography and tribological properties of DLC films[J]. Lubrication Engineering, 2005(4): 19–21. doi: 10.3969/j.issn.0254-0150.2005.04.007

[22]

黄星烨, 孙瑶, 张保军, 等. 甲烷流量对类金刚石薄膜氢含量和性能的影响[J]. 武汉理工大学学报, 2013, 35(5): 8–12. doi: 10.3963/j.issn.1671-4431.2013.05.002

Huang Xingye, Sun Yao, Zhang Baojun, et al. Influence of methane flow rate on hydrogen content and properties of diamond-like carbon films[J]. Journal of Wu Han University of Technology, 2013, 35(5): 8–12. doi: 10.3963/j.issn.1671-4431.2013.05.002

[23]

C Casiraghi, F Piazza, A C Ferrari, et al. Bonding in hydrogenated diamond-like carbon by Raman spectroscopy[J]. Diamond and Related Materials, 2005, 14(3-7): 1098–1102. doi: 10.1016/j.diamond.2004.10.030

[24]

Bai L, Zhang G, Lu Z, et al. Tribological mechanism of hydrogenated amorphous carbon film against pairs: a physical description[J]. Journal of Applied Physics, 2011, 110(3): 033521. doi: 10.1063/1.3619798

[25]

Andersson J, Erck R A, Erdemir A. Frictional behavior of diamondlike carbon films in vacuum and under varying water vapor pressure[J]. Surface and Coatings Technology, 2003, 163: 535–540.

[1]

韩明, 杜建华, 宁克焱, 许成法. 湿式铜基粉末冶金摩擦材料黏着损伤研究[J]. 摩擦学学报, 2014, 34(6):-205.

[2]

. 热处理对类金刚石碳薄膜力学和摩擦性能的影响[J]. 摩擦学学报, 2004, 24(3):-205.

[3]

. 钛合金表面类金刚石碳梯度薄膜的摩擦磨损性能研究[J]. 摩擦学学报, 2001, 21(3):-205.

[4]

王军军, 蒲吉斌, 张广安, 王立平. Si过渡层类金刚石薄膜界面优化及其性能研究[J]. 摩擦学学报, 2014, 34(5):-205.

[5]

. 直流射频等离子体增强化学气相沉积类金刚石碳薄膜的结构及摩擦学性能研究[J]. 摩擦学学报, 2004, 24(1):-205.

[6]

蒲吉斌, 万善宏, 胡天昌, 王立平, 胡丽天. 离子液体/织构化类金刚石碳复合润滑薄膜的构筑及其摩擦学性能的研究[J]. 摩擦学学报, 2012, 32(5):-205.

[7]

. 用等离子体增强化学气相沉积技术制备类金刚石碳薄膜的摩擦磨损性能研究[J]. 摩擦学学报, 2005, 25(4):-205.

[8]

. 类金刚石碳膜的摩擦学特性及其研究进展[J]. 摩擦学学报, 2001, 21(1):-205.

[9]

许伟, 代明江, 林松盛, 侯惠君, 李洪, 周克崧. 掺W类金刚石薄膜的高温摩擦学行为[J]. 摩擦学学报, 2017, 37(3):-205. doi: 10.16078/j.tribology.2017.03.014

[10]

. 相对湿度对类金刚石薄膜摩擦磨损性能的影响[J]. 摩擦学学报, 2005, 25(5):-205.

[11]

王成兵, 王舟, 张俊彦. 含氮类金刚石薄膜的力学和摩擦学性能的研究[J]. 摩擦学学报, 2012, 32(1):-205.

[12]

张艳, 东梅, 李媚, 段早琦. 纳尺度下类金刚石(DLC)薄膜摩擦性能研究[J]. 摩擦学学报, 2015, 35(2):-205. doi: 10.16078/j.tribology.2015.02.017

[13]

. 掺氮类金刚石薄膜的纳米力学及纳米摩擦特性研究[J]. 摩擦学学报, 2005, 25(6):-205.

[14]

. 氮和碳等离子体基离子注入铝合金表面氮化铝/类金刚石碳膜改性层的摩擦学特性[J]. 摩擦学学报, 2001, 21(5):-205.

[15]

. 类金刚石薄膜表面有机单分子薄膜的制备及其摩擦性能研究[J]. 摩擦学学报, 2007, 27(6):-205.

[16]

. 钛合金表面液相电解类金刚石碳膜的摩擦磨损性能[J]. 摩擦学学报, 2005, 25(3):-205.

[17]

. 中频磁控溅射沉积含铝类金刚石碳膜结构及其摩擦磨损性能研究[J]. 摩擦学学报, 2008, 28(2):-205.

[18]

. 医用NiTi形状记忆合金表面类金刚石薄膜的生物摩擦磨损性能研究[J]. 摩擦学学报, 2006, 26(6):-205.

[19]

. 钛合金表面掺金属类金刚石薄膜的摩擦磨损性能研究[J]. 摩擦学学报, 2007, 27(4):-205.

[20]

. 单源低能离子束辅助沉积类金刚石薄膜摩擦性能的研究[J]. 摩擦学学报, 1995, 15(2):-205.

  • 计量
    • PDF下载量 (3)
    • 文章访问量 (38)
    • HTML全文浏览量 (16)
    • 引证文献数  (0)
    目录

    Figures And Tables

    界面调控对类金刚石碳基薄膜/铜摩擦副摩擦学行为的影响

    吴刊选, 刘增家, 郑韶先, 张广安, 李霞, 鲁志斌, 蒲吉斌