2019, 39(2):206-212. doi: 10.16078/j.tribology.2018086

TC4钛合金在模拟海水中腐蚀?磨损交互行为研究

1. 

重庆理工大学 理学院,重庆 400054

2. 

重庆理工大学 材料科学与工程学院,重庆 400054

3. 

重庆市制动摩擦材料协同创新中心,重庆 400054

通讯作者: 黄伟九, huangweijiu@cqut.edu.cn

收稿日期: 2018-07-16
录用日期: 2018-01-11
网络出版日期: 2019-03-28

Corrosion-Wear Interaction Behavior of TC4 Titanium Alloy in Simulated Seawater

1. 

Chongqing University of Technology, School of Science, Chongqing 400054, China

2. 

College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China

3. 

Chongqing Collaborative Innovation Center for Brake Tribological Matrials, Chongqing 400054, China

Corresponding author: Weijiu HUANG, huangweijiu@cqut.edu.cn

Received Date: 16 Jul 2018
Accepted Date: 11 Jan 2018
Available Online: 28 Mar 2019

引用本文: 王林青, 周永涛, 王军军, 王忠维, 黄伟九. TC4钛合金在模拟海水中腐蚀?磨损交互行为研究[J]. 摩擦学学报. doi: 10.16078/j.tribology.2018086.

Citation: Linqing WANG, Yongtao ZHOU, Junjun WANG, Zhongwei WANG and Weijiu HUANG. Corrosion-Wear Interaction Behavior of TC4 Titanium Alloy in Simulated Seawater[J]. TRIBOLOGY.

采用自制摩擦腐蚀装置研究了TC4钛合金在模拟海水中电化学腐蚀与机械磨损间的交互作用,探究了不同电化学状态对TC4钛合金腐蚀磨损行为的影响. 在摩擦腐蚀过程中,TC4钛合金的腐蚀电位发生负偏移,腐蚀电流随着外加电位升高而增大,在零电流电势(OCP)附近TC4钛合金获得最低摩擦系数. TC4钛合金总体积损失随着外加电位的增加而增大,证实了腐蚀磨损交的交互作用随着外加电位的增加而增强;当电位从–0.5 V增大至0.8 V时,腐蚀磨损交互作用导致的材料损失占总材料损失的比例由12%增加至66%,其中腐蚀诱导磨损导致的损失量占比由7%增加至44%. OCP及其以下外加电位条件下,TC4钛合金的磨损机制为磨粒磨损;0 V电位下TC4钛合金磨损机制为磨粒磨损和疲劳磨损;0.8 V电位下TC4钛合金的磨损机制为磨粒磨损和摩擦诱导的腐蚀磨损.

关键词: TC4, 外加电位, 腐蚀磨损, 交互作用, 磨损机制
[1]

王兰, 王树奇, 陈康敏, 等. TC4和TC11合金磨损性能的对比研究[J]. 摩擦学学报, 2015, 32(2): 214–220. doi: 10.16078/j.tribology.2015.02.013

Wang Lan, Wang Shuqi, Chen Kangmin, et al. A comparison on the wear performance of TC4 and TC11 alloys[J]. Tribology, 2015, 32(2): 214–220. doi: 10.16078/j.tribology.2015.02.013

[2]

余鹏程, 刘秀波, 陆小龙, 等. Ti6Al4V合金表面激光熔覆复合涂层的高温摩擦学性能研究[J]. 摩擦学学报, 2015, 35(6): 737–745. doi: 10.16078/j.tribology.2015.06.013

Yu Pengcheng, Liu Xiubo, Lu Xiaolong, et al. High-temperature tribological properties of laser clad composite coatings on Ti6Al4V alloy[J]. Tribology, 2015, 35(6): 737–745. doi: 10.16078/j.tribology.2015.06.013

[3]

吴松波, 蔡振兵, 林禹, 等. 硬质沙粒对TC4钛合金冲击磨损的损伤行为的研究[J]. 摩擦学学报, 2018, 38(4): 14–21. doi: 10.16078/j.tribology.2018.04.002

Wu Songbo, Ca Zhenlin, Lin Yu, et al. Effect of hard sand on the impact wear behavior of TC4 alloy[J]. Tribology, 2018, 38(4): 14–21. doi: 10.16078/j.tribology.2018.04.002

[4]

李振华, 华晨, 程先华. 等径角挤压后Ti5553钛合金的冲蚀磨损机理演变[J]. 摩擦学学报, 2015, 35(1): 45–52. doi: 10.16078/j.tribology.2015.01.007

Li Zhenhua, Hua Chen, Cheng Xianhua. Erosion mechanism evolution of Ti5553 treated by equal channel angular extrusion[J]. Tribology, 2015, 35(1): 45–52. doi: 10.16078/j.tribology.2015.01.007

[5]

夏申琳, 王刚, 杨晓, 等. 钛及钛合金在船舶中的应用[J]. 金属加工(冷加工), 2016, (19): 40–41. doi: 10.3969/j.issn.1674-1641.2016.19.015

Xia Shenlin, Wang Gang, Yang Xiao, et al. Application of titanium and titanium alloy in ships[J]. Cold Machining of Metal Processing, 2016, (19): 40–41. doi: 10.3969/j.issn.1674-1641.2016.19.015

[6]

陈军, 王廷询, 周伟, 等. 国内外船用钛合金及其应用[J]. 钛工业进展, 2015, 32(6): 8–12.

Chen Jun, Wang Tingxun, Zhou Wei, et al. Domestic and foreign marine titanium alloy and its application[J]. Titanium Industry Progress, 2015, 32(6): 8–12.

[7]

高溥, 何东青, 郑韶先, 等. 碳基和氮化物基涂层的摩擦-腐蚀交互行为的原位研究[J]. 摩擦学学报, 2015, 32(2): 138–146. doi: 10.16078/j.tribology.2015.02.003

Gao Pu, He Dongqing, Zheng Shaoxian, et al. In-situ study of tribocorrosion behavior of carbon-based and nitride-based coatings[J]. Tribology, 2015, 32(2): 138–146. doi: 10.16078/j.tribology.2015.02.003

[8]

陈君, 李全安, 张清, 等. 海水腐蚀对几种金属材料耐磨性能的影响[J]. 材料热处理学报, 2014, 35(12): 166–171.

Chen Jun, Li Quanan, Zhang Qing, et al. Effect of corrosion on wear resistance of several metals in seawater[J]. Transactions of Materials & Heat Treatment, 2014, 35(12): 166–171.

[9]

Ding H, Dai Z, Zhou F, et al. Sliding friction and wear behavior of TC11 in aqueous condition[J]. Wear, 2007, 263(1-6): 117–124. doi: 10.1016/j.wear.2007.01.106

[10]

Wang Z, Huang W, Li Y, et al. Tribocorrosion behaviour of a biomedical Ti-25Nb-3Mo-3Zr-2Sn alloy in Ringer's solution[J]. Materials Science & Engineering C, 2017, 76: 1094–1102.

[11]

Wang Z, Zhou Y, Wang H, et al. Tribocorrosion behavior of Ti-30Zr alloy for dental implants[J]. Materials Letters, 2018, 218: 190–192. doi: 10.1016/j.matlet.2018.02.008

[12]

Priya R, Mallika C, Mudali U K. Wear and tribocorrosion behaviour of 304L SS, Zr-702, Zircaloy-4 and Ti-grade2[J]. Wear, 2014, 310(1-2): 90–100. doi: 10.1016/j.wear.2013.11.051

[13]

Chen J, Zhang Q. Effect of electrochemical state on corrosion-wear behaviors of TC4 alloy in artificial seawater[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(4): 1011–1018. doi: 10.1016/S1003-6326(16)64164-X

[14]

Barril S, Mischler S, Landolt D. Electrochemical effects on the fretting corrosion behaviour of Ti6Al4V in 0.9% sodium chloride solution[J]. Wear, 2005, 259(1-6): 282–291. doi: 10.1016/j.wear.2004.12.012

[15]

Henry P, Takadoum J, Ber?ot P. Tribocorrosion study of 316L stainless steel and TA6V4 alloy in various electrolytes[J]. Corrosion Science, 2009, 51(6): 1308–1314. doi: 10.1016/j.corsci.2009.03.015

[16]

Ye Y, Wang Y, Ma X, et al. Tribocorrosion behaviors of multilayer PVD DLC coated 304L stainless steel in seawater[J]. Diamond & Related Materials, 2017, 79: S0925963517302066.

[17]

Stack M M, Rodling J, Mathew M T, et al. Micro-abrasion-corrosion of a Co-Cr/UHMWPE couple in ringer's solution: An approach to construction of mechanism and synergism maps for application to bio-implants[J]. Wear, 2010, 269(5): 376–382.

[18]

李新星, 李奕贤, 王树奇. TC4合金在不同环境介质中的磨损行为及磨损机制研究[J]. 稀有金属, 2015, 39(9): 793–798.

Li Xinxing, Li Yixian, Wang Shuqi. Wear behavior and mechanism of TC4 alloy in different environmental media[J]. Chinese Journal of Rare Metals, 2015, 39(9): 793–798.

[19]

Ponthiaux P, Wenger F, Drees D, et al. Electrochemical techniques for studying tribocorrosion processes[J]. Wear, 2004, 256(5): 459–468. doi: 10.1016/S0043-1648(03)00556-8

[20]

Totolin V, Pejakovi? V, Csanyi T, et al. Surface engineering of Ti6Al4V surfaces for enhanced tribocorrosion performance in artificial seawater[J]. Materials & Design, 2016, 104: 10–18.

[21]

Azzi M, Paquette M, Szpunar J A, et al. Tribocorrosion behaviour of DLC-coated 316L stainless steel[J]. Wear, 2009, 267(5): 860–866.

[22]

Sun Y, Rana V. Tribocorrosion behaviour of AISI 304 stainless steel in 0.5 M NaCl solution[J]. Materials Chemistry & Physics, 2011, 129(1): 138–147.

[23]

Tekin K C, Malayoglu U. Assessing the tribocorrosion performance of three different nickel-based superalloys[J]. Tribology Letters, 2010, 37(3): 563–572. doi: 10.1007/s11249-009-9552-1

[24]

陈君, 阎逢元, 王建章. 海水环境下TC4钛合金腐蚀磨损性能的研究[J]. 摩擦学学报, 2012, 32(1): 1–6. doi: 10.16078/j.tribology.2012.01.001

Chen Jun, Yan Fengyuan, Wang Jianzhang. Corrosion wear properties of TC4 titanium alloy in artificial seawater[J]. Tribology, 2012, 32(1): 1–6. doi: 10.16078/j.tribology.2012.01.001

[1]

. 湿磨工况下冲击功对高锰钢腐蚀磨损交互作用的影响[J]. 摩擦学学报, 2009, 29(1):-212.

[2]

陈君, 阎逢元, 王建章. 海水环境下TC4钛合金腐蚀磨损性能的研究[J]. 摩擦学学报, 2012, 32(1):-212.

[3]

. TC11钛合金在人造海水中的腐蚀磨损特性研究[J]. 摩擦学学报, 2008, 28(2):-212.

[4]

薛伟海, 高禩洋, 段德莉, 刘阳, 李曙. 刮擦线速度对TC4叶片与Ni-G封严涂层磨损行为的影响[J]. 摩擦学学报, 2013, 33(6):-212.

[5]

谢明玲, 杨皎, 张广安, 薛群基, 崔学军. Si-DLC薄膜在硝酸介质中的腐蚀磨损行为与机理[J]. 摩擦学学报, 2017, 37(4):-212. doi: 10.16078/j.tribology.2017.04.013

[6]

. 两种油套管钢在两相流中的腐蚀磨损特性研究[J]. 摩擦学学报, 2006, 26(1):-212.

[7]

. 流化催化剂磨损机制的研究进展[J]. 摩擦学学报, 2007, 27(1):-212.

[8]

程亚兵, 孟繁忠, 冯增铭. 汽车发动机用窄型链的多冲磨损特性研究[J]. 摩擦学学报, 2009, 29(6):-212.

[9]

张松伟, 胡丽天, 王海忠, 冯大鹏. 两种含氟空间润滑油的真空摩擦磨损行为研究[J]. 摩擦学学报, 2012, 32(6):-212.

[10]

任峻, 马颖, 陶钦贵. 触变成型AZ91D镁合金的干滑动磨损机制图研究[J]. 摩擦学学报, 2016, 36(3):-212. doi: 10.16078/j.tribology.2016.03.007

[11]

. 原位TiB晶须增强钛基复合材料的磨损机制[J]. 摩擦学学报, 2005, 25(1):-212.

[12]

. Al2O3纤维增强铝基复合材料干滑动磨损机制的研究[J]. 摩擦学学报, 2005, 25(6):-212.

[13]

. 成分和组织对衬板钢在腐蚀料浆环境下的冲击磨损性能与机理的影响[J]. 摩擦学学报, 2005, 25(3):-212.

[14]

. 车轮钢滚动剥离摩擦磨损特性研究[J]. 摩擦学学报, 2005, 25(5):-212.

[15]

. 氧气气氛中CrNiMo钢的高温高速干滑动摩擦磨损性能[J]. 摩擦学学报, 2008, 28(4):-212.

[16]

张翼祥, 闫晓晗, 王渊博, 冯吉贺, 郜来奔, 董洋, 安健. Mg-3Al-0.4Si镁合金的高温磨损行为研究[J]. 摩擦学学报, 2017, 37(6):-212. doi: 10.16078/j.tribology.2017.06.015

[17]

王文健, 郭俊, 刘启跃. 接触应力对轮轨材料滚动摩擦磨损性能影响[J]. 摩擦学学报, 2011, 31(4):-212.

[18]

吴帅, 付航涛, 连勇, 高文, 张津, 黄进峰. 一种新型热作模具钢的高温磨损性能研究[J]. 摩擦学学报, 2016, 36(1):-212. doi: 10.16078/j.tribology.2016.01.016

[19]

申芳华, 李再久, 杨天武, 金青林, 蒋业华, 周荣. 规则多孔铜基自润滑材料的干摩擦磨损性能[J]. 摩擦学学报, 2012, 32(2):-212.

[20]

. 内氧化法制备Al2O3/Cu复合材料电滑动磨损性能的研究[J]. 摩擦学学报, 2008, 28(1):-212.

  • 计量
    • PDF下载量 (2)
    • 文章访问量 (40)
    • HTML全文浏览量 (16)
    • 引证文献数  (0)
    目录

    Figures And Tables

    TC4钛合金在模拟海水中腐蚀?磨损交互行为研究

    王林青, 周永涛, 王军军, 王忠维, 黄伟九